In static switching applications, power designs focus on minimizing conduction losses, optimizing thermal behavior, and achieving compact and lightweight systems while ensuring high quality at a low cost. To meet the needs of next-generation solutions, Infineon Technologies AG is expanding its CoolMOS™ S7 family of high-voltage superjunction (SJ) MOSFETs.
The devices are aiming at SMPS, solar energy systems, battery protection, solid-state relays (SSR), motor-starters and solid-state circuit breakers, as well as PLCs, lighting control, HV eFuse/eDisconnect, (H)EV on-board chargers.
The portfolio extension includes innovative QDPAK top-side cooling (TSC) packages and offers a wide range of features in a small footprint. This makes it highly advantageous for low-frequency switching applications while optimizing cost positioning.
Thanks to the novel high-power QDPAK packaging, they offer an R DS(on) of only 10 mΩ, which is the lowest on the market in this voltage class and the lowest in SMD packages. By minimizing conduction losses of the MOSFETs, the CoolMOS S7/S7A solutions contribute to higher overall efficiency and provide an easy and cost-optimized way to improve system performance.
The CoolMOS S7 power switches also effectively manage heat dissipation with improved thermal resistance. Thanks to the innovative and efficient QDPAK packaging, they also reduce or even eliminate the need for heat sinks in solid-state designs, resulting in more compact and lighter systems.
The MOSFETs are available in both top-side and bottom-side variants, and feature high-pulse current capability, enabling them to handle sudden surges of current. In addition, they exhibit body diode robustness to ensure reliable operation during AC line commutation.
With fewer components required, they reduce part count, resulting in flexible system integration, lower BOM costs, and total cost of ownership (TCO). In addition, these MOSFETs enable shorter reaction times, particularly when breaking a current, facilitating smoother and more efficient operation.
Original – Infineon Technologies