• WT Microelectronics to Acquire Future Electronics

    WT Microelectronics to Acquire Future Electronics

    2 Min Read

    WT Microelectronics Co., Ltd. announced that it has entered into a definitive agreement to acquire 100% of the shares of Future Electronics Inc. (“Future Electronics”) for an enterprise value of US$3.8 billion in an all-cash transaction. The strategic transaction is anticipated to deliver long-term, sustainable value to all relevant stakeholders including customers, suppliers, employees, and shareholders through the combination of two highly complementary organizations.

    Future Electronics, a Canadian-based leading global distributor of electronic components, generated revenues of US$2.9 billion, operating income of US$228 million, and net income of US$184 million for the six months ended on June 30, 2023. The privately-held company, with approximately 5,200 employees in 47 countries, provides customers with application engineering expertise and supply chain services covering a portfolio of electronics from industry leading suppliers.

    “This is transformational for WT Microelectronics and Future Electronics and important for the electronic component ecosystem,” said Eric Cheng, Chairman and CEO of WT Microelectronics. “Future Electronics has an experienced and deep management team and a very talented employee base, and is highly complementary to WT Microelectronics in terms of product offerings, customer coverage, and global footprint.

    Future’s management team, all of their employees worldwide, and all locations and distribution centers will continue to operate and add value to the organization. We are excited to invite Mr. Omar Baig to join WT Microelectronics’ Board of Directors post-closing and look forward to working with him and his immensely talented colleagues around the world to build together a best-in-class electronic components distributor.”

    “We are excited to join WT Microelectronics and believe that this transaction will benefit all our stakeholders. Our two companies share a common culture, driven by a rich entrepreneurial spirit that will empower our talented employees globally”, said Omar Baig, President, CEO and Chairman of Future Electronics. “This combination is a great opportunity for WT Microelectronics and Future Electronics to jointly form a world-class industry leader, and allows us to continue our long-term strategic plan to offer the highest level of services to our customers, which we have been doing for the past 55 years.”

    Original – WT Microelectronics

    Comments Off on WT Microelectronics to Acquire Future Electronics
  • Resonac Introduces Key Concept “Here We Go”

    Resonac Introduces Key Concept “Here We Go”

    2 Min Read

    Resonac Holdings Corporation published English version of its integrated report “RESONAC REPORT 2023,” and made it available to the public via the Group’s website

    RESONAC REPORT 2023, which is the first integrated report published with the name of Resonac, is edited under the key concept of “Here We Go,” and introduces financial and non-financial strategies and tactics of the Resonac Group, which aims to be a Co-creative Chemical Company.

    The Report thoroughly investigates “Co-creative Chemical Company” which the Resonac Group aims to be, and describes progress in “Resonac’s Human Capital Management” and training of “co-creative talent,” while introducing the Group’s new initiatives including “Resonac Pride Products & Services” which contribute to improvement in customers’ and  public welfare through practice of our Purpose, “Change society through the power of chemistry.”

    In addition, the Report describes the present situation and future prospects of the Resonac Group including how “Team Takahashi,” the management team of the Resonac Group lead by President and CEO Hidehito Takahashi, functions, dialogue with outside experts about the Group’s human capital management, discussion with an outside director about transformation of the Board of Directors, and conversation and interview between Resonac’s global top and young researchers. Thus, more people appear on the RESONAC REPORT 2023 than those on the integrated report of 2022.

    The Resonac Group positions the Report as a tool to give stakeholders better understanding of the Group and promote value creation through dialogue between the Group and stakeholders. It will continue communicating with the stakeholders via dialogue and the Group’s website how the Group is behaving as a Co-creative Chemical Company.

    Original – Resonac

    Comments Off on Resonac Introduces Key Concept “Here We Go”
  • Bosch Trains over 130,000 Associates in Technologies of the Future

    Bosch Trains over 130,000 Associates in Technologies of the Future

    6 Min Read

    It’s something that affects nearly every company. An aging society and labor shortages are social trends that are shaping the 21st century. “Bosch is facing up to these challenges as a committed employer: we’re focusing on training and upskilling as well as on intelligent technology that makes associates’ work easier,” says Stefan Grosch, member of the Bosch board of management and director of industrial relations. In 2022, the company offered more than 30,000 training seminars worldwide, with more than 520,000 Bosch associates taking part.

    One focus was technological expertise. More than 130,000 participants were able to acquire knowledge in technologies of the future such as electromobility, software engineering, and Industry 4.0. “Looking at the metrics for the first half of the year, we expect to train around 50 percent more Bosch participants in 2023 than we did the year before,” Grosch says.

    This commitment to training does not end at the company’s own factory gates. With academies, training centers, and training courses, Bosch also offers other companies, customers, and interested parties the opportunity to acquire knowledge. On the subject of Industry 4.0, for example, the company makes more than 100 Bosch training programs on digitalization and connectivity in manufacturing available externally through Bosch Connected Industry, Bosch Rexroth, and training institutes.

    Bosch is facing up to these challenges as a committed employer: we’re focusing on training and upskilling as well as on intelligent technology that makes associates’ work easier,says Stefan Grosch, member of the Bosch board of management and director of industrial relations.

    According to the European Commission, three-quarters of companies in the EU report difficulties in finding qualified workers, and only 37 percent of adults engage in regular further professional development. “Bosch promotes lifelong learning. This is the key to lasting professional and business success,” Grosch says. It is also essential for a country’s economic output. “If we want to maintain prosperity in Germany and remain successful as an exporting and industrial nation, we must invest even more in upskilling and intelligent technology and actively encourage people to enroll,” Grosch says. Bosch offers all associates the opportunity for professional development.

    In 2022, Bosch associates attended one to two training courses on average; in addition, they completed two to three web-based courses. Roughly 6,000 seminars deal with technologies of the future. Lasting an average of two days, these seminars are particularly thorough. Digitalization often determines not only the topic and content of training courses, but also their form: in 2022, online courses accounted for two-thirds of all training hours for Bosch associates.

    “Digitalization is becoming a training booster for companies and their workforce; it enables learning independent of place and time and gives people a chance to experience new technologies such as artificial intelligence firsthand,” says Bosch CDO and member of the board of management Dr. Tanja Rückert. Last year alone, Bosch spent some 300 million euros on professional development for its associates. “At Bosch, we develop technology that is ‘Invented for life.’ To do that, we need the right team with talented people in all positions, and we need them to continuously improve and expand their skills,” Grosch says.

    Digitalization is becoming a training booster for companies and their workforce; it enables learning independent of place and time and gives people a chance to experience new technologies such as artificial intelligence firsthand,says Bosch CDO and member of the board of management Dr. Tanja Rückert.

    The labor shortage comes at a cost. The Boston Consulting Group estimates the loss in potential output for the German economy to be 86 billion euros. The German Chamber of Commerce and Industry puts it even higher, at just under 100 billion euros – annually. In an international comparison of the nations with the strongest economies, the losses suffered by the German economy are the second highest after the United States. “In the competition for the best talent, companies have to put everything on the line. A future-oriented corporate approach also means identifying vocational training and professional development opportunities and offering them to the workforce. Having highly qualified personnel is a decisive competitive advantage,” Grosch says.

    As a manufacturer and technology company, Bosch pays close attention to professional development for its associates in manufacturing operations. This year, for example, its mobility business launched the LernWerk initiative to train 24,000 associates in readiness for the digital transformation, initially at German sites. “Manufacturing is where value creation begins in our company. This is where we lay the foundation for business success. Our progressive and efficient manufacturing operations feature an impressive degree of connectivity and digitalization. One important prerequisite for this is ensuring associates receive the necessary training,” Rückert says.

    As part of Bosch’s training program for other companies, its Industry 4.0 courses are additionally offered in Germany and elsewhere through partners such as chambers of industry and commerce, colleges, and universities: “From France and the Czech Republic to China, India, and Singapore, companies are training their manufacturing workers according to the German model. Bosch is one of the Industry 4.0 pioneers, and we are sharing our knowledge all around the world. Industry 4.0 training ‘made in Germany’ is becoming the global standard,” Rückert says.

    In addition to vocational training and professional development programs, Bosch develops training systems that are compatible with the syllabuses of industrial and educational institutions. Bosch Rexroth is launching its new Automax 600 training system. Using internationally standardized programming languages and open interfaces, this gives users practical experience of the digitalization of production processes – including controlling robotic systems, operating autonomous transport systems, and using cloud applications such as data analysis and machine learning based on artificial intelligence.

    There are various remedies for labor shortages. One is vocational training and professional development, and visa programs for skilled workers are another. And technology also has a key role to play. Bosch Rexroth, for example, has developed an automation solution that no longer requires any previous specialist knowledge of automation. Users of ctrlX Automation can choose from over 30 popular programming languages. The company is taking a similar approach to hydraulics: In the future, customers can use H4U to integrate Bosch Rexroth software into the automation architecture they are already familiar with, eliminating the need to build up their own hydraulics expertise.

    “By opening up systems, making technology interoperable, and moving hardware applications into software, we reduce complexity and dependencies, such as on specialists,” Rückert says. Moreover, technology makes life easier for workers whose tasks are monotonous, strenuous, or hazardous. Robotics supports loading and palletizing, artificial intelligence helps with the optical inspection of workpieces, augmented reality guides through work processes, and driverless transport systems take goods directly to where they are needed.

    “Only by increasing productivity can we manage the impact of an aging society. This calls for well-trained specialists, as well as technology that allows them to work rationally and efficiently. The interplay between humans and machines and between training and digitalization is a key success factor,” Grosch says.

    Original – Bosch

    Comments Off on Bosch Trains over 130,000 Associates in Technologies of the Future
  • Vitesco Technologies Developing Robust SiC Power Modules

    Vitesco Technologies Developing Robust SiC Power Modules

    3 Min Read

    Vitesco Technologies is developing a power module which will be manufactured using transfer molding process. During this process the power electronics are sealed under a dielectric material that protects the components extremely well. The result is a very robust, cost effective and reliable electronic. The power module consists of three overmolded half-bridges and forms the core of an inverter system, which controls both the drive energy and the energy recovery (recuperation) in high-voltage electric vehicles. 

    Manufactured at the Nuremberg electronics plant, the power modules will be delivered to a large global car maker from mid-2025 onwards.

    Vitesco Technologies has been adapting and utilizing transfer molding technology since 2020, first applying it to compact Transmission Control Units designed for full integration inside a gear box. 

    The overmold power modules now combine highly efficient state-of-the art silicon carbide (SiC) chip technology with overmolding to facilitate a particularly robust product with increased power density, lower cost and reduced weight.

    These power modules are a good example of strategic approach of using the scalability and modularity of our power electronics to develop and manufacture submodules in addition to the complete electronics. Combined with extensive overmolding expertise, Vitesco can deliver an extremely robust product to our customers. This is yet another example of how the company successfully transfers proven technology to an electrification product.

    • Thomas Stierle, member of the board and head of Vitesco Technologies’ Electrification Solutions division

    Vitesco Technologies has extensive expertise in power electronics and is already on the market with its fourth generation. The newly developed overmold power module expands the company’s strategic portfolio.

    A very deep system competence is necessary to ensure that a sub-module of this kind, which forms the core of the inverter, can be successfully integrated into the full system. Our degree of electronics modularity and scalability enables us to offer more flexibility in terms of customer-specific interfaces.

    • Michael Horbel, head of product and platform management high voltage inverter at Vitesco Technologies

    Vitesco Technologies will continue to use this strength to bring further electronic sub-modules to the market. 

    The lead plant for these modules is Vitesco Technologies’ Nuremberg site. With its existing competencies and experience, the plant offers a high degree of automation as well as the focus on electronics and e-mobility required for the power modules. This is a further step forward into the “Plant of the Future” concept, defined for the Nuremberg plant to maintain its international competitiveness.

    Original – Vitesco Technologies

    Comments Off on Vitesco Technologies Developing Robust SiC Power Modules
  • Magnachip Introduced New 1200V and 650V IGBTs

    Magnachip Introduced New 1200V and 650V IGBTs

    1 Min Read

    Magnachip Semiconductor Corporation announced the launch of its 1200V and 650V Insulated Gate Bipolar Transistors (IGBTs), designed for the positive temperature coefficient (PTC) heaters of electric vehicles (EVs).

    Built upon Magnachip’s cutting-edge Field Stop Trench technology, the newly introduced AMBQ40T120RFRTH (1200V) and AMBQ40T65PHRTH (650V) offer a minimum short-circuit withstand time of 10µs. This remarkable level of ruggedness enables PTC heaters to be protected from a permanent failure in the event of overcurrent conditions.

    Furthermore, the thick and large heat sink of the TO-247 package allows these new IGBTs to excel in heat dissipation. Therefore, these IGBTs are well-suited for applications requiring high power and efficiency, such as both the upper and lower sides of power management integrated circuits of PTC heaters.

    “Since early last year, Magnachip has released high-performance automotive power solutions that adhere to the stringent AEC-Q101 standards,” said YJ Kim, CEO of Magnachip. “Now that we have successfully released our first IGBT products for EVs, we will continue to expand our product lineup to meet the diverse needs of the EV market and cater to the demands of our valued customers.”

    New IGBTs for EV PTC heaters

    Original – Magnachip Semiconductor

    Comments Off on Magnachip Introduced New 1200V and 650V IGBTs
  • Axcelis Announced $200 Million Additional Funding for Share Repurchase Program

    Axcelis Announced $200 Million Additional Funding for Share Repurchase Program

    2 Min Read

    Axcelis Technologies, Inc. announced that its Board of Directors has authorized additional funding of $200 million for the Company’s share repurchase program. The purchases are funded from available working capital.

    “We are pleased to announce our Board’s approval of additional funding for our share repurchase program,” stated President and CEO Russell Low. “From 2019 through the second quarter of this year, we have returned over $157 million of cash to shareholders via stock repurchases. The additional funding will maintain our program when the Board’s prior funding is exhausted later this year. The strength of our business model and significant cash flow generation enable us to continue investing for the long term, while also returning cash to our shareholders.”

    Repurchases of the Company’s common stock will be made from time to time under the SEC’s Rule 10b-18, subject to market conditions. These shares may be purchased in the open market or through privately negotiated transactions. The Company may from time to time enter into Rule 10b5-1 trading plans to facilitate the repurchase of its common stock pursuant to its share repurchase program. The Company has no obligation to repurchase shares under the authorization. The Company may suspend or discontinue the repurchase program at any time.

    Original – Axcelis Technologies

    Comments Off on Axcelis Announced $200 Million Additional Funding for Share Repurchase Program
  • centrotherm Supplies Horizontal Equipment to Renesas to expand 300 mm Power Semiconductors Fab

    centrotherm Supplies Horizontal Equipment to Renesas to expand 300 mm Power Semiconductors Fab

    2 Min Read

    Two cluster tools of centrotherm’s new generation horizontal furnace c.HORICOO 300 will be integrated into Renesas’ 300 mm wafer production line in Kofu, Japan (Yamanashi Prefecture). Renesas Electronics Corporation is one of the global leading semiconductor manufacturers headquartered in Japan, that provides microcontrollers, analog devices and power semiconductors for automotive and industrial applications. Renesas is the first manufacturer in Japan to use the fully automated, high-throughput production solution in mass production.

    The 8-tube cluster c.HORICOO 300 is designed for oxidation and annealing processes on 300 mm silicon wafers. With its fully automated wafer and boat handling, the system offers a reduction in total cost of ownership of up to 50% compared to vertical furnace solutions with a significant improvement in yield. After the market launch and evaluation phase in 2018, the high-throughput system cluster is already integrated in the production lines of well-known European customers. Due to the sales success at Renesas, we expect a pull effect with Japanese power-semiconductor device makers as well as with the leading Asian manufacturers.

    From 2024, Renesas will start production of its new generation IGBTs at its Kofu fab. This is where transistors for the next generation of inverters for electric vehicles are produced, which are expected to achieve considerable savings in battery power and thus significantly increase the driving range.

    “The c.HORICOO 300 is an important component for the expansion of our power semiconductor fab for 300-mm wafers. centrotherm is one of the leading suppliers of thermal process technology for the semiconductor industry, and we look forward to deepening our relationship as well as collaborating in the coming years,” said Kojiro Horita, Senior Director of Power Device Project Office, Production and Technology Unit, Renesas Electronics Corporation.

    Original – centrotherm

    Comments Off on centrotherm Supplies Horizontal Equipment to Renesas to expand 300 mm Power Semiconductors Fab
  • Toshiba Introduces 600V IP Devices

    Toshiba Introduces 600V IP Devices

    2 Min Read

    Toshiba Electronics Europe GmbH launched two products for brushless DC (BLDC) motor drive applications including fan motors, ventilation fan, air conditioners, air cleaners, and pumps.

    Each of the intelligent power devices (IPD) incorporate  600V-rated IGBTs and a matched gate driver as a one-chip solution in a single compact package. The output DC current (IOUT) rating of the TPD4163F is 1A while the TPD4164F is rated at 2A.

    The two devices (TPD4163F and TPD4164F) have an IGBT  saturation voltage (VCEsat) of 2.6V and 3.0V respectively, while the Diode forward voltage (VF) is 2.0V and 2.5V.

    Both devices are housed in a miniature surface mount HSSOP31 package. With dimensions of just 17.5mm x 11.93mm x 2.2mm, the PCB footprint is reduced by around 63% when compared with Toshiba’s existing DIP26 package products. This makes a significant contribution to reducing the space required for motor drive circuit boards.

    In addition, in geographic regions where the power supply is unstable, the supply voltage may fluctuate significantly. Therefore, to improve reliability, the supply voltage rating (VBB)has been increased from 500V to 600V to introduce more design margin.

    To support the new devices, Toshiba has developed a reference design for BLDC sensorless brushless DC motor drive utilizing the new TPD4164F and a microcontroller TMPM374FWUG.

    Toshiba will continue to expand their product lineup with various packages and improved characteristics, contributing to customers’ design flexibility and carbon neutrality through energy-saving motor control.

    Volume production shipments of both new devices (and the reference design board) start today.

    Original – Toshiba

    Comments Off on Toshiba Introduces 600V IP Devices
  • Flanders Semiconductors The New Hub for Semiconductor Ecosystem at the Heart of Europe

    Flanders Semiconductors: The New Hub for Semiconductor Ecosystem at the Heart of Europe

    3 Min Read

    A group of semiconductor companies in Flanders have come together to create Flanders Semiconductors, a new nonprofit organization representing the interests of the industry at local, European, and global levels. The organization is open to all qualifying companies, both in and outside of the Flanders region, that have semiconductor technology at the core of their business.

    Flanders Semiconductors is a significant move for the Flemish semiconductor industry, which currently employs well over 3,000 people directly, has more than 50 companies with semiconductor as their core business, and over 100 companies defining, testing, and integrating advanced customized semiconductor devices or technologies.

    Flanders Semiconductors covers the whole supply chain, including infrastructure, equipment, materials, processing, testing, and devices. The Flanders region also boasts world-class research facilities such as IMEC, universities, and institutes providing semiconductor R&D, education, and training. The objectives of Flanders Semiconductors are to increase the talent pool, share industry roadmaps, maintain a yearly business events calendar, and represent members’ interests at international levels. The organization will also market the region and its members internationally, to promote cooperation between members and to cooperate with similar organizations in Europe.

    Flanders Semiconductors is led by President Lou Hermans, who has over three decades of industry expertise, along with a team of seasoned semiconductor professionals. Together with the dedicated management team, their mission is to foster collaboration, drive innovation, and catalyze growth within the semiconductor ecosystem, both in Flanders and on a global scale.

    “We are thrilled to officially announce the launch of Flanders Semiconductors, poised to be(come) another important European hub for semiconductor innovation,” said Lou Hermans, President of Flanders Semiconductors. “Our founding members, including BelGan, Caeleste, Cochlear, easics, ICsense, NXP, Pharrowtech, Sofics, and Spectricity, have united to create a platform that champions the semiconductor industry’s interests at every level. I am deeply inspired and motivated by the drive, support, remarkable power and unity of the founding members. Our diverse community of present and future member companies, each bringing their unique solutions to the semiconductor industry, exemplifies the immense strength and boundless potential that collaboration holds.”

    Flanders Semiconductors welcomes all qualifying companies with semiconductors as their main business and is open to associate memberships for universities, R&D organizations, and non-qualifying companies.

    The grand unveiling of the Flanders Semiconductor association is set for September 13th in Leuven, Belgium and interested parties can join this special occasion. Registrations to secure a spot can be done at www.flanders-semiconductors.org

    Original – Flanders Semiconductors

    Comments Off on Flanders Semiconductors: The New Hub for Semiconductor Ecosystem at the Heart of Europe
  • Korea Electrotechnology Research Institute Transfers Ion Implantation Evaluation Technology for SiC to Hungary

    Korea Electrotechnology Research Institute Transfers Ion Implantation Evaluation Technology for SiC to Hungary

    3 Min Read

    Korea Electrotechnology Research Institute (KERI) succeeded in transferring the ‘Ion Implantation and its Evaluation Technology for the SiC (silicon carbide) Power Semiconductor’ to a Hungarian company.

    Power semiconductors are key components in electricity and electronics, acting as the muscles of the human body by regulating the direction of current and controlling power conversion. There are many different materials for power semiconductors. Among them, SiC is receiving the most attention due to its excellent material properties, including high durability and excellent power efficiency. When SiC power semiconductors are incorporated into electric vehicles, they cut down the power consumption of the battery and reduce the body weight and volume of the vehicle, resulting in energy efficiency improvements of up to 10%

    While SiC power semiconductors have many advantages, the manufacturing process is also very challenging. Previously, a method was applied to create a device by forming an epi layer (single-crystal semiconductor thin-film) on a highly conductive wafer and flowing current through that area. However, during this process, the surface of the epi layer becomes rough and the speed of electron transfer decreases. The price of the epi wafer itself is also high, which is a major obstacle to mass production.

    To solve this problem, KERI used a method of implanting ions into a semi-insulated SiC wafer without an epi layer. Ion implantation, which makes a wafer conductive, is the work that breathes life into a semiconductor.

    SiC materials are hard and require very high energy ion implantation followed by high temperature heat treatment to activate the ions, making it a difficult technology to implement. However, KERI has succeeded in securing the relevant technologies based on its 10 years of experience in operating ion implantation equipment dedicated to SiC.

    “Ion implantation technology can significantly reduce process costs by increasing current flow in semiconductor devices and replacing expensive epi wafers,” said Dr. Kim, Hyoung Woo, Director, Advanced Semiconductor Research Center, KERI. He continued, “This is a technology that increases the price competitiveness of high-performance SiC power semiconductors and contributes greatly to mass production.”

    This technology was recently transferred to ‘SEMILAB ZRT (CEO: Tibor Pavelka)’, a semiconductor metrology equipment company located in Budapest, Hungary. With a 30-year history, SEMILAB has manufacturing plants in Hungary and the United States. SEMILAB owns patents for medium-sized precision measurement equipment and material characterization equipment, and has the world’s leading technology in semiconductor electrical parameter evaluation system.

    They predict that through this technology transfer, they will be able to standardize high-quality SiC. SEMILAB plans to use KERI technology to develop specialized equipment to evaluate the ion implantation process of SiC power semiconductor.

    Park Su-yong, the president of SEMILAB Korea, said, “Through the development of specialized equipment, we will be able to progress in-line monitoring of implant processes on SiC wafers for immediate, accurate, and low-cost production control of implant systems and in-line monitoring for pre-anneal implant.” He added, “This will be a great foundation for stably securing a high-quality ion implantation mass production process with excellent uniformity and reproducibility.”

    KERI is a government-funded research institute under the NST (National Research Council of Science & Technology) of the Ministry of Science and ICT. It has a total of more than 120 intellectual property rights in the field of power semiconductor research. As of the last 10 years, power semiconductor division of KERI has achieved more than KRW 3 billion in technology transfers, the highest level in South Korea.

    Original – KERI

    Comments Off on Korea Electrotechnology Research Institute Transfers Ion Implantation Evaluation Technology for SiC to Hungary