-
Cambridge GaN Devices (CGD) is addressing higher power industrial applications with its ICeGaN™ technology which has already proved itself rugged, reliable and easy-to-use in high volume consumer devices. At the APEC 2024, IEEE Applied Power Electronics Conference and Exposition, the company is introducing new reference designs and showing demos which address the broad and diverse industrial market.
Andrea Bricconi | Chief Commercial Officer, CGD
“We are acutely aware of the increasing power requirements of industrial applications, and the need for high efficiency. For example, as the use of Artificial Intelligence (AI) proliferates, the power demanded by the exponential growth in power demanded by datacentres is growing almost exponentially. Other applications, such as solar inverters, amplifiers, transport and smart mobility, process control and manufacturing are also interested in GaN and the feedback we have received is that they love the simplicity of our ‘Drive it Like a MOSFET’ approach.”
At APEC, visitors to the booth are able to see the progress that CGD is making to support both emerging and existing markets for GaN technology..
With a high power density of 23 W/in3, GGD’s 350 W PFC/LLC reference design has an average efficiency of 93%, and a no-load power consumption of 150 mW. The CrM Totem Pole PFC + Half-Bridge LLC PSU has been realised using CGD’s 650 V, 55 mΩ, H2 series ICeGaN technology, and delivers 20 V / 17.5 A output.
The result of a partnership deal struck last year with Neways Electronics, a 3 kW photo-voltaic inverter is used to boost the DC solar voltage to a stable DC link voltage. With a maximum efficiency of 99.22% due to zero-current switching, it is a perfect example of how CGD’s GaN HEMT structure is simple for engineers to use, since it employs a standard silicon controller from Analog Devices Inc.
ICeGaN has been employed by AGD Productions in its compact AGD DUET amplifier which is rated at 300W 4Ω. This is the first time the company has used a 100% GaN power transistor design for both the power stage and the amplifier.
Finally, the GaNext project, a consortium of 13 partners from three nations has delivered compact 1 kW intelligent power modules featuring integrated drive, voltage control and protection circuits using CGD’s ICeGaN.
Original – Cambridge GaN Devices
-
GaN / LATEST NEWS / PRODUCT & TECHNOLOGY / WBG2 Min Read
Power Integrations announced the InnoMux™-2 family of single-stage, independently regulated multi-output offline power-supply ICs. InnoMux-2 ICs consolidate AC-DC and downstream DC-DC conversion stages into a single chip, providing up to three independently regulated outputs for use in white goods, industrial systems, displays and other applications requiring multiple voltages.
Elimination of separate DC-DC stages slashes component count, reduces PCB footprint and increases efficiency by as much as 10 percentage points compared to traditional two-stage architectures. Efficiency is aided by the ICs’ 750 V PowiGaN™ gallium-nitride transistors, zero-voltage switching (without an active clamp) and synchronous rectification.
Roland Saint-Pierre, vice president of product development at Power Integrations said: “Most modern electronic systems rely on multiple internal voltages to operate various functions such as computing, communication and actuation function – typically heat, light, sound or motion of some kind. But losses in each conversion stage are compounded, degrading system performance and generating heat.
The InnoMux-2 IC overcomes this challenge by providing up to three independently regulated voltage outputs or two voltage output and a constant current output from a single stage, achieving a compact and efficient power sub-system with low component count.”
InnoMux-2 ICs deliver up to 90 watts of output power with accurate regulation of better than ±3 percent across the full input line, load, temperature and differential current step conditions. Total power system efficiency (AC to regulated low-voltage DC segment) is above 90 percent; the advanced InnoMux-2 controller also manages light-load power delivery, avoiding the need for pre-load resistors and reducing no-load consumption to less than 30 mW. This conserves power for necessary functionality in applications subject to the 300 mW allowance for standby usage under the European energy-using product (EuP) regulations.
InnoMux-2 devices leverage Power Integrations’ thermally efficient InSOP™24 and InSOP™28 packages with PCB cooling, so no heatsink is required. Device options include dual- and three-output constant voltage (CV); optionally, one output may be dedicated to constant current (CC) drive, suitable for powering LEDs in displays or for high-speed charging of an internal battery. Typical applications include TVs, monitors, appliances, networking, home and building automation, LED emergency lighting and industrial power supplies.
Original – Power Integrations
-
LATEST NEWS / PRODUCT & TECHNOLOGY / SiC / WBG2 Min Read
Infineon Technologies AG introduced the 750V G1 discrete CoolSiC™ MOSFET to meet the increasing demand for higher efficiency and power density in industrial and automotive power applications. The product family includes both industrial-graded and automotive-graded SiC MOSFETs that are optimized for totem-pole PFC, T-type, LLC/CLLC, dual active bridge (DAB), HERIC, buck/boost, and phase-shifted full bridge (PSFB) topologies.
The MOSFETs are ideal for use in both typical industrial applications, such as electric vehicle charging, industrial drives, solar and energy storage systems, solid state circuit breaker, UPS systems, servers/ datacenters, telecom, and in the automotive sector, such as onboard chargers (OBC), DC-DC converters, and many more.
The CoolSiC MOSFET 750 V G1 technology features excellent RDS (on) x Q fr and superior RDS (on) x Q oss Figure-of-Merits (FOMs), resulting in ultra-high efficiency in hard-switching and soft-switching topologies respectively. Its unique combination of high threshold voltage (V GS(th), Typ. of 4.3 V) with low Q GD/Q GS ratio ensures high robustness against parasitic turn-on and enables unipolar gate driving, leading to increased power density and low cost of the systems.
All devices use Infineon’s proprietary die-attach technology which delivers outstanding thermal impedance for equivalent die sizes. The highly reliable gate oxide design combined with Infineon’s qualification standards delivers robust and long-term performance.
With a granular portfolio ranging from 8 to 140 mΩ RDS (on) at 25°C, this new CoolSiC MOSFET 750 V G1 product family meets a wide range of needs. Its design ensures lower conduction and switching losses, boosting overall system efficiency.
Its innovative packages minimize thermal resistance, facilitate improved heat dissipation, and optimize in-circuit power loop inductance, thereby resulting in high power density and reduced system costs. It’s important to note that this product family features the cutting-edge QDPAK top-side cooled package.
Original – Infineon Technologies
-
GlobalWafers held its board meeting to approve 2023 financial results.
FY2023 consolidated revenue reached NT$70.7 billion with YoY 0.5%; gross profit of NT$26.4 billion, with -12.9% YoY, gross profit margin of 37.4%, with -5.8% YoY; operating income of NT$20.1 billion, with -19.7% YoY, operating income margin of 28.4%, with -7.1% YoY; profit before tax of NT$26.5 billion, with 31.8% YoY, profit before tax margin of 37.5%, with 8.9% YoY; net profit of NT$19.8 billion, with 28.6% YoY, net profit margin of 28.0%, with 6.1% YoY; EPS reached NT$45.41, with an increase of more than NT$10 compared with the previous year.
FY2023 consolidated revenue grew in 3 concessive years and rose to the highest again! FY2023 EPS, profit before tax margin and net profit margin all hit record high.
Despite the semiconductor industry in 2023 facing a slowdown in global economic and consumer electronics demand, coupled with increased inventory pressure, GlobalWafers benefited from a high proportion of LTAs and maintained high utilization rates for FZ wafers and compound semiconductor wafers, achieving continued growth in revenue throughout the year.
Looking ahead to 2024, as terminal market inventories are gradually reabsorbed, AI features will progressively integrate into personal computers, tablets, and smartphones, potentially driving a wave of upgrades. In the meantime, the AI ecosystem relies on supports from peripherals and semiconductor components, fueling demands for edge computing, high-performance computing (HPC) and spurring the development of low-power consumption-related components (SiC, ULLD, IGBT…).
More innovations are expected to be introduced, such as 5G, electrification, smart cockpits, and autonomous driving, contributing to the growth momentum in the semiconductor market. Besides, policies related to energy transition and net-zero carbon emissions in various countries have laid a long-term foundation for the development of compound semiconductors. In 2024, the market is expected to gradually recover, with memory leading the way in releasing signals.
However, the pace and extent of economic recovery depend on various factors, including different terminal applications and global economic uncertainties such as war, rising shipping costs, interest rate changes, and exchange rate fluctuations. Positioned in the upstream of the semiconductor industry, GlobalWafers anticipates a recovery a quarter or two later than downstream and expects a healthier performance in the second half of the year compared to the first half, considering that customers will prioritize depleting existing inventories.
With a comprehensive product spectrum ranging from 3” to 12” semiconductor wafers, GlobalWafers is able to cater for customers’ needs to cope with market fluctuations of individual products. Moreover, the Company has carried out expansion plans to get ready for the acceleration toward advanced processes.
GlobalWafers has become a long-term partner of customers with its focus on sustainability and the unique advantages of highly regionalized deployment that allows the Company to supply products in proximity, reducing the carbon footprint and the impact of carbon tariffs, while also mitigating geopolitical risks. With flexible asset allocation and a sound financial structure, GlobalWafers is resilient to market volatility and continues to create profits through prudent operations.
Original – GlobalWafers
-
LATEST NEWS / SiC / WBG3 Min Read
Vishay Intertechnology, Inc. announced that at the Applied Power Electronics Conference and Exposition (APEC) 2024, the company is showcasing its broad portfolio of passive and semiconductor solutions that address the latest trends in power electronics — from energy harvesting, electric vehicle (EV) powertrains, and mass commercialization to efficient and effective power electronics for power tools and switching regulators that shorten the iterative design cycle.
Taking center stage in booth 1607 will be Vishay’s newly released 1200 V MaxSiC™ series silicon carbide (SiC) MOSFETs, which deliver on-resistances of 40, 80 and 250 mΩ in standard packages for industrial applications, with custom products also available. In addition, Vishay will provide a roadmap for 650 V to 1700 V SiC MOSFETs with on-resistances ranging from 12 mΩ to 1 Ω.
Vishay’s SiC platform is based on a proprietary MOSFET technology — enabled through the company’s recent acquisition of MaxPower Semiconductor, Inc. — which will address market demands in traction inverter, photovoltaic energy storage, on-board charger, and charging station applications. At the booth, Vishay’s experts will also be discussing upcoming planned releases of the MaxSiC platform, including AEC-Q101 Automotive Grade products.
At APEC 2024, Vishay will also be offering a variety of product-focused demonstrations highlighting IHPT haptic actuators; the THJP ThermaWick® Thermal Jumper; the pulse performance of MELF, CRCW / CRCW-HP thick film, and MCS, MCU, and MCW thin film chip resistors; and the thermal capabilities of the PCAN and RCP high power thin and thick film resistors. In addition, application-focused demonstrations will include:
- An 800 V SiC MOSFET heat pump with a 100 % Vishay BOM
- A high voltage intelligent battery shunt for 400 V and 800 V batteries
- A six-phase DC/DC converter for mild hybrid vehicles with 48 V boardnets that provides power to 12 V loads up to 3 kW with high efficiency to 97 %
- A semiconductor-based, resettable eFuse for 800 V electric vehicle systems
Additional Vishay passive components on display at APEC 2024 will include the IHDM series of high current, edge-wound through hole inductors with continuous operation to +180 °C; hybrid planar and integrated transformers; wireless charging coils; NTC thermistors and PTC thermistors, including the PTCEL series capable of handling energy absorption up to 240 J; high power wirewound, thin film, and thick film resistors, including the anti-surge RCS with power to 0.5 W in the 0805 case size; high voltage thick film resistors and dividers; high voltage aluminum, ceramic, and power electronic capacitors (PEC); high energy tantalum capacitors; and robust metallized polypropylene film capacitors, including the MKP1848e DC-Link capacitor with high temperature operation to +125 °C.
Highlighted Vishay semiconductor solutions will consist of the SiC967 high voltage synchronous buck regulator with integrated power MOSFETs and inductors; 400 V, 600 V, and 1200 V standard rectifiers in SlimDPAK 2L and SMPD 2L packages with high creepage distance; 650 V and 1200 V SiC Schottky diodes up to 12 A in eSMP® series and power packages for AC/DC power factor correction (PFC) and ultra high frequency output rectification; and transient voltage suppressors (TVS).
Original – Vishay Intertechnology