• onsemi Unveiled Power Solutions to Improve Energy Efficiency for Data Centers

    onsemi Unveiled Power Solutions to Improve Energy Efficiency for Data Centers

    3 Min Read

    As data centers become increasingly power-hungry to support the tremendous processing requirements of AI workloads, the need for boosting energy efficiency is paramount. The powerful combination of onsemi’s latest generation T10 PowerTrench® family and EliteSiC 650V MOSFETs create a solution that offers unparalleled efficiency and high thermal performance in a smaller footprint for data center applications.

    Compared to a typical search engine request, an AI-supported engine request requires more than 10x the power, leading to data center power needs expected to reach an estimated 1,000 TWh globally in less than two years. To process one AI-supported request, energy is converted four times from the grid to the processor, which can result in an energy loss of approximately 12%.

    Using the T10 PowerTrench family and EliteSiC 650V solution, data centers are able to reduce power losses that occur by an estimated 1%. If implemented in data centers globally, the solution could reduce energy consumption by 10 TWh annually or the equivalent of the energy required to fully power nearly one million homes per year.

    The EliteSiC 650V MOSFET offers superior switching performance and lower device capacitances to achieve higher efficiency in data centers and energy storage systems. Compared to the previous generation, these new generation silicon carbide (SiC) MOSFETs have halved the gate charge and reduced both the energy stored in output capacitance (Eoss) and the output charge (Qoss) by 44%.

    With no tail current during turn-off and superior performance at high temperatures, they can also significantly reduce switching losses compared to super junction (SJ) MOSFETs. This allows customers to downsize system components while increasing the operating frequency, resulting in an overall reduction in system costs. 

    Separately, the T10 PowerTrench Family is engineered to handle high currents, crucial for DC-DC power conversion stages, and offers increased power density and superior thermal performance in a compact footprint. This is achieved through a shield gate trench design, which boasts an ultra-low gate charge and an RDS (on) of less than 1 milliohm. Additionally, the soft recovery body diode and lower Qrr effectively minimizes ringing, overshoots, and electrical noise to ensure optimal performance, reliability, and robustness under stress. The T10 PowerTrench Family also meets the stringent standards required for automotive applications.

    The combined solution also meets the stringent Open Rack V3 (ORV3) base specification required by hyperscale operators to support the next generation of high-power processors.  

    “AI and electrification are reshaping our world and skyrocketing power demands. Accelerating innovation in power semiconductors to improve energy efficiency is key to enabling these technological megatrends. This is how we power the future responsibly,” said Simon Keeton, group president, Power Solutions Group, onsemi. “Our latest solution can significantly reduce power losses that occur during the energy conversion process and have a meaningful impact on the demands for the next generation of data centers.”

    Original – onsemi

    Comments Off on onsemi Unveiled Power Solutions to Improve Energy Efficiency for Data Centers
  • NXP Semiconductors and Vanguard International Semiconductor to Establish a Joint Venture to Build and Operate a 300mm Fab

    NXP Semiconductors and Vanguard International Semiconductor to Establish a Joint Venture to Build and Operate a 300mm Fab

    3 Min Read

    Vanguard International Semiconductor Corporation and NXP Semiconductors N.V. announced the plan to create a manufacturing joint-venture VisionPower Semiconductor Manufacturing Company Pte Ltd (“VSMC”) which will build a new 300mm semiconductor wafer manufacturing facility in Singapore.

    The joint-venture fab will support 130nm to 40nm mixed-signal, power management and analog products, targeting the automotive, industrial, consumer and mobile end markets. The underlying process technologies are planned to be licensed and transferred to the joint venture from TSMC.

    The joint venture will begin construction of the initial phase of the wafer fab in the second half of 2024, pending receipt of all required regulatory approvals, with initial production available to customers during 2027. The joint venture will operate as an independent, commercial foundry supplier, providing assured proportional capacity to both equity partners, with an expected output of 55,000 300mm wafers per month in 2029. The joint venture will create approximately 1,500 jobs in Singapore. Upon the successful ramp of the initial phase, a second phase will be considered and developed pending commitments by both equity partners.

    The total cost of the initial build out is anticipated to be $7.8 billion. VIS will inject $2.4 billion representing a 60 percent equity position in the joint venture and NXP will inject $1.6 billion for the remaining 40 percent equity position. VIS and NXP have agreed to contribute an additional $1.9 billion which will be utilized to support the long-term capacity infrastructure. The remaining funding including loans will be provided by third parties to the joint venture. The fab will be operated by VIS.

    “VIS is pleased to work with leading global semiconductor company NXP to build our first 300mm fab. This project aligns with our long-term development strategies, demonstrating VIS’ commitment to meeting customer demands, and diversifying our manufacturing capabilities,” said VIS Chairman Leuh Fang. “Adhering to the vision of business sustainability, this fab will be built adopting the Singapore Green Mark standards and implementing rigorous green manufacturing measures. We will continue to create great value for our stakeholders and look forward to working with customers, suppliers, local talents, and government to continuously contribute to Singapore and the global semiconductor ecosystem.”

    “NXP continues to take proactive actions to ensure it has a manufacturing base which provides competitive cost, supply control, and geographic resilience to support our long-term growth objectives,” said Kurt Sievers, NXP President and CEO. “We believe VIS is well suited and fully understands the complexities involved in building and operating together with NXP a 300mm analog mixed signal fab. The joint venture partnership we intend to create with VIS perfectly aligns within NXP’s hybrid manufacturing strategy.”

    Original – NXP Semiconductors

    Comments Off on NXP Semiconductors and Vanguard International Semiconductor to Establish a Joint Venture to Build and Operate a 300mm Fab
  • Toshiba Started Mass Production of a 3rd Gen 1200 V SiC MOSFET Module

    Toshiba Started Mass Production of a 3rd Gen 1200 V SiC MOSFET Module

    2 Min Read

    Toshiba Electronic Devices & Storage Corporation has started mass production of a 3rd generation silicon carbide (SiC) 1200 V and drain current (DC) rating 400 A of SiC MOSFET module “MG400Q2YMS3” for industrial equipment and has expanded its lineup.

    The new product MG400Q2YMS3 offers low conduction loss with low drain-source on-voltage (sense) of 0.9 V (typ.). It also offers low switching loss with both turn-on switching loss and turn-off switching loss of 13 mJ (typ.). These help to reduce power loss of equipment and the size of cooling device.

    MG400Q2YMS3 has a low stray inductance of 12 nH (typ.) and is capable of high-speed switching. In addition, it suppresses surge voltage in switching operation. Thus, it is available for high frequency isolated DC-DC converter.

    Toshiba’s SiC MOSFET module of 2-153A1A package has a lineup of five existing products, MG250YD2YMS3 (2200 V / 250 A), MG400V2YMS3 (1700 V / 400 A), MG250V2YMS3 (1700 V / 250 A), and MG600Q2YMS3 (1200 V / 600 A), including new products. This provides a wider range of product selection.

    Toshiba will continue to meet the needs for high efficiency and the downsizing of industrial equipment.

    Applications

    Industrial equipment

    • Auxiliary power supply for railway vehicles
    • Renewable energy power generation systems
    • Motor control equipment for industrial equipment
    • High frequency DC-DC converters, etc.

    Features

    • Low drain-source on-voltage (sense):
      VDS(on)sense=0.9 V (typ.) (ID=400 A, VGS=+20 V, Tch=25 °C)
    • Low turn-on switching loss:
      Eon=13 mJ (typ.) (VDD=600 V, ID=400 A, Tch=150 °C)
    • Low turn-off switching loss:
      Eoff=13 mJ (typ.) (VDD=600 V, ID=400 A, Tch=150 °C)
    • Low stray inductance:
      LsPN=12 nH (typ.)

    Original – Toshiba

    Comments Off on Toshiba Started Mass Production of a 3rd Gen 1200 V SiC MOSFET Module
  • At PCIM Europe Cambridge GaN Devices will Present Solutions for Data Centres, Inverters, Motor Drives

    At PCIM Europe Cambridge GaN Devices will Present Solutions for Data Centres, Inverters, Motor Drives

    3 Min Read

    Cambridge GaN Devices (CGD) will take the opportunity afforded by PCIM, Europe’s leading power electronics exhibition and conference (Nuremberg Messe, 11-13th June) to demonstrate how the company’s product portfolio is developing to address higher power applications such as motor drives, inverters and data centres, as well as lower power, ultra-compact smart portable device adapters and chargers.

    As well as introducing a new product family, and showing a selection of informative demos on its booth (Hall 7 stand 643), CGD will have a very visible presence around the show with various presentations.

    • 15.00, Tuesday 11th June, Hall 9-642: Dr Giorgia Longobardi, CGD’s CEO, will formally launch the company’s latest ICeGaN™ 650V family of GaN ICs, targeting applications in the 1kW to 5kW range.
    • 13.30, Tuesday 11th June, Technology Stage (Hall 7 Stand 743): CGD’s CTO, Professor Florin Udrea will take part in a panel discussion hosted by Markt & Technik editor, Engelbert Hopf.
    • 14:20, Wednesday 12th June, Technology Stage (Hall 7 booth 743): Professor Udrea will be part of a panel discussion hosted by Bodo’s Power Systems, entitled ‘GaN Wide Bandgap Design, the Future of Power.’
    • 14.10, Thursday 13th June, Technology Stage (Hall 7 booth 743): Di Chen, Director of Business Development & Technical Marketing, CGD, and José Quiñones Staff Applications Engineer at Qorvo will share the stage with a joint presentation ‘GaN Power ICs and Power Application Controller Optimize Performance in BLDC and PMSM Motor Drives.’

    ANDREA BRICCONI | CHIEF COMMERCIAL OFFICER, CGD
    “With its inherent ruggedness and reliability, our ICeGaN™ GaN ICs are perfectly suited to meet the needs of higher power applications such as data centres and inverters. Our presentations and demos and the new devices which we are launching at the show will illustrate our capabilities for these markets.

    CGD’s Booth (Hall 7 643) will feature reference designs, evaluation boards and demos that support the company’s existing business in chargers and adapters as well as the new higher power applications. New exhibits include:

    • Very high power density (30W/in3) 140W reference design produced with the Taiwanese Industrial Technology Research Institute (ITRI) board
    • Single leg of a 3-phase automotive inverter demo board, developed in partnership with French public R&I institute, IFP Energies nouvelles
    • Two half-bridge evaluation boards with new thermally-enhanced DFN package designs
    • A 2.7kW totem-pole power factor correction demo board
    • Qorvo motor drive evaluation kit using ICeGaN
    • Demo comparing a half-bridge circuit realized using ICeGaN vs discrete e-Mode GaN

    ANDREA BRICCONI | CHIEF COMMERCIAL OFFICER, CGD
    “The power electronics world has swung irrevocably in favour of GaN. Visit CGD during PCIM to experience the world’s easiest-to-use GaN, so your application can benefit from GaN’s greater efficiency and higher power density now, without any design delays.”

    Original – Cambridge GaN Devices

    Comments Off on At PCIM Europe Cambridge GaN Devices will Present Solutions for Data Centres, Inverters, Motor Drives
  • Ideal Power Successfully Qualified Company's Second Wafer Fabrication Supplier

    Ideal Power Successfully Qualified Company’s Second Wafer Fabrication Supplier

    2 Min Read

    Ideal Power Inc. announced the successful completion of its qualification of the Company’s second wafer fabrication supplier with high-volume production capability. This facility in Europe adds dual sourcing for wafer fabrication and will support future revenue growth, providing ample capacity to support anticipated customer demand over at least the next two to three years.

    “We are delighted to announce this key milestone of qualifying a second high-volume wafer foundry to provide wafer fabrication for our products. This fab successfully completed a multi-wafer full process flow engineering run of double-sided B-TRAN™ wafers. By leveraging our proprietary and proven process flow, this foundry was able to produce functional, bidirectional devices on their initial run without the need for special equipment or capital investment,” said Dan Brdar, President and Chief Executive Officer of Ideal Power.

    European wafer fabrication supplier highlights:

    • This supplier, along with our previously qualified wafer fabricator in Asia, provides dual sourcing for wafer fabrication in disparate geographies with no exposure to China or Taiwan to mitigate supply chain risk.
    • Demonstrated expertise in commercial manufacturing of high power, bipolar devices such as IGBTs. This expertise provides proven process recipes, capability and equipment that can be readily used or adapted for B-TRAN™ double-sided wafer fabrication.
    • Qualified manufacturer of semiconductor wafers to multiple Tier 1 automotive suppliers. This will help Ideal Power to attract and engage prospective automotive OEMs and Tier 1 automotive suppliers as customers.
    • ISO 9001 and ISO 14001 certified to globally recognized standards for quality and environmental management systems.

    Ideal Power’s patented semiconductor power switch, B-TRAN™, can reduce power losses by 50% or more over conventional power switches, depending on the application. B-TRAN™’s higher efficiency results in less heat being generated and therefore significantly lower thermal management requirements, requiring significantly smaller surface area to dissipate heat and giving rise to potentially smaller original equipment manufacturer products.

    B-TRAN™ offers the industry’s only symmetric bidirectional operation, reducing the number of components required for an application by 75% compared to a conventional bidirectional switch utilizing IGBTs and diodes. This highly efficient and unique symmetric operation provides a strong competitive advantage in bidirectional applications, which are growing rapidly as transportation electrifies and power generation shifts to renewable energy coupled with energy storage. 

    Original – Ideal Power

    Comments Off on Ideal Power Successfully Qualified Company’s Second Wafer Fabrication Supplier
  • ElevATE Semiconductor and GlobalFoundries Partner for High-Voltage Chips

    ElevATE Semiconductor and GlobalFoundries Partner for High-Voltage Chips

    3 Min Read

    ElevATE Semiconductor and GlobalFoundries announced a manufacturing partnership for high-voltage chips produced at GF’s facility in Essex Junction, Vermont. Designed by ElevATE and manufactured at scale by GF on its proven and power-efficient 7HV technology platform, the chips are vital to both commercial semiconductor testing equipment and critical applications for aerospace and defense systems.  

    The agreement outlines GF’s supply of its 7HV chip technology to ElevATE and the marketplace. Manufactured on 200mm wafers at GF’s Vermont facility, the mature-node chips pair power management and wireless sensing capabilities, delivering the performance, design flexibility and power efficiency required by a range of electronics devices in national security systems. The 7HV platform is optimized for cost and performance, and offers a full suite of features and options with well-characterized design tools, as well as proven manufacturing reliability with robust yields. 

    To meet the demands of commercial clients and the aerospace and defense industry, ElevATE and GF are collaborating to provide restart support and reestablish the production of 7HV chips. The renewed availability of the 7HV platform will save customers costs, time, and the challenge of redesigning their products using a different chip technology. The new supply will build upon the success of the millions of 7HV chips previously manufactured at GF’s Vermont facility.  

    “This collaboration marks a significant transformation in ElevATE’s production strategy, transitioning its fabrication processes to GlobalFoundries,” said Anil Kodali, Vice President of Operations and Quality Assurance at ElevATE. “With GF as our manufacturing partner, we can be sure of a robust and reliable source of supply, enabling us to meet the escalating demands of our customers in terms of volume, quality and time-to-market.” 

    “Our collaboration with ElevATE underscores GF’s commitment to ensuring the U.S. semiconductor and national security ecosystems have a reliable supply of secure, domestically manufactured chips,” said Nicholas Sergeant, vice president and head of the aerospace, defense and critical infrastructure business at GF. “As the leading supplier of essential chips for the U.S. aerospace and defense industry and a longstanding partner to the Department of Defense, GF goes above and beyond to ensure our national security customers have the chips they need, manufactured where they want them, with the right level of security.” 

    GF’s facility in Essex Junction, Vermont, near Burlington, was among the first major semiconductor manufacturing sites in the United States. Today, around 1,800 GF employees work at the site. Built on GF’s differentiated technologies, these GF-made chips are used in smartphones, automobiles, and communications infrastructure applications around the world. The facility is a DMEA-accredited Trusted Foundry and manufactures secure chips in partnership with the U.S. government. 

    Original – GlobalFoundries

    Comments Off on ElevATE Semiconductor and GlobalFoundries Partner for High-Voltage Chips
  • Infineon Technologies Announced CoolGaN Bidirectional Switch and CoolGaN Smart Sense

    Infineon Technologies Announced CoolGaN Bidirectional Switch and CoolGaN Smart Sense

    3 Min Read

    Infineon Technologies AG announced two new CoolGaN™ product technologies, CoolGaN bidirectional switch (BDS) and CoolGaN Smart Sense. CoolGaN BDS provides exceptional soft- and hard-switching behavior, with bidirectional switches available at 40 V, 650 V and 850 V. Target Applications of this family include mobile device USB ports, battery management systems, inverters, and rectifiers.

    The CoolGaN Smart Sense products feature lossless current sensing, simplifying design and further reducing power losses, as well as transistor switch functions integrated into one package. They are ideal for usage in consumer USB-C chargers and adapters.

    The CoolGaN BDS high voltage will be available at 650 V and 850 V and feature a true normally-off monolithic bi-directional switch with four modes of operation. Based on the gate injection transistor (GIT) technology, the devices have two separate gates with substrate terminal and independent isolated control. They utilize the same drift region to block voltages in both directions with outstanding performance under repetitive short-circuit conditions.

    Applications can benefit by using one BDS instead of four conventional transistors, resulting in higher efficiency, density, and reliability. Furthermore, significant cost savings are achieved. The devices optimize performance in the replacement of back-to-back switches in single-phase H4 PFC and HERIC inverters and three-phase Vienna rectifiers. Additional implementations include single-stage AC power conversion in AC/DC or DC/AC topologies.

    The CoolGaN BDS 40 V is a normally-off, monolithic bi-directional switch based on Infineon’s in-house Schottky Gate GaN technology. It can block voltages in both directions, and through a single-gate and common-source design, it is optimized to replace back-to-back MOSFETs used as disconnect switches in battery-powered consumer products. The first 40 V CoolGaN BDS product has a 6 mΩ R DS(on), with a range of products to follow. Benefits of using 40 V GaN BDS vs. back-to-back Si FETs include 50 – 75 percent PCB area savings and a reduction of power losses by more than 50 percent, all at a lower cost.

    The CoolGaN Smart Sense products feature 2 kV electrostatic discharge withstand and can connect to controller current sense for peak current control and overcurrent protection. The current sense response time is ~200 ns, which is equal or less than common controller blanking time for ultimate compatibility.

    Implementing the devices results in increased efficiency and cost savings. At a higher R DSs(on) of e.g. 350 mΩ, the CoolGaN Smart Sense products offer similar efficiency and thermal performance at lower cost compared to traditional 150mΩ GaN transistors. Moreover, the devices are footprint compatible to Infineon’s transistor-only CoolGaN package, eliminating the need for layout rework and PCB respin, and further facilitating design with Infineon’s GaN devices.

    Engineering samples of the CoolGaN BDS 40 V are available now for 6 mΩ and will follow in Q3 2024 for 4 mΩ and 9 mΩ. Samples of the CoolGaN BDS 650 V will be available in Q4 2024, and 850 V will follow early 2025. CoolGaN Smart Sense samples will be available in August 2024. Further information is available here: https://www.infineon.com/cms/en/product/promopages/GaN-innovations/

    Original – Infineon Technologies

    Comments Off on Infineon Technologies Announced CoolGaN Bidirectional Switch and CoolGaN Smart Sense