• onsemi Introduced Latest Generation EliteSiC M3e MOSFETs

    onsemi Introduced Latest Generation EliteSiC M3e MOSFETs

    4 Min Read

    In the face of escalating climate crises and a dramatic rise in global energy demands, governments and industries are committing to ambitious climate goals aimed at mitigating environmental impact and securing a sustainable future. Key to these efforts is the transition to electrification to reduce carbon emissions and embrace renewable energy resources.

    In a significant step towards accelerating this global transition, onsemi introduced its latest generation silicon carbide technology platform, EliteSiC M3e MOSFETs. The company also disclosed plans to release multiple additional generations through 2030.

    “The future of electrification is dependent on advanced power semiconductors. Today’s infrastructure cannot keep up with the world’s demands for more intelligence and electrified mobility without significant innovations in power. This is critical to the ability to achieve global electrification and stop climate change,” said Simon Keeton, group president, Power Solutions Group, onsemi. “We are setting the pace for innovation, with plans to significantly increase power density in our silicon carbide technology roadmap through 2030 to be able to meet the growing demands for energy and enable the global transition to electrification.”

    The EliteSiC M3e MOSFETs will play a fundamental role in enabling the performance and reliability of next-generation electrical systems at lower cost per kW, thus influencing the adoption and effectiveness of electrification initiatives. With the ability to operate at higher switching frequencies and voltages while minimizing power conversion losses, this platform is essential for a wide range of automotive and industrial applications such as electric vehicle powertrains, DC fast chargers, solar inverters and energy storage solutions.

    Additionally, the EliteSiC M3e MOSFETs will enable the transition to more efficient, higher-power data centers to meet the exponentially increasing energy demands that power a sustainable artificial intelligence engine.

    Through onsemi’s unique design engineering and manufacturing capabilities, the EliteSiC M3e MOSFETs achieve a significant reduction in both conduction and switching losses on the trusted and field-proven planar architecture. Compared to previous generations, the platform can reduce conduction losses by 30% and turn-off losses by up to 50%.

    By extending the life of SiC planar MOSFETs and delivering industry-leading performance with EliteSiC M3e technology, onsemi can ensure the robustness and stability of the platform, making it a preferred choice for critical electrification applications

    The EliteSiC M3e MOSFETs also offer the industry’s lowest specific on-resistance (RSP) with short circuit capability which is critical for the traction inverter market that dominates SiC volume. Packaged in onsemi’s state-of-the-art discrete and power modules, the 1200V M3e die delivers substantially more phase current than previous EliteSiC technology, resulting in approximately 20% more output power in the same traction inverter housing. Conversely, a fixed power level can now be designed with 20% less SiC content, saving costs while enabling the design of smaller, lighter and more reliable systems.

    Additionally, onsemi provides a broader portfolio of intelligent power technologies including gate drivers, DC-DC converters, e-Fuses and more to pair with the EliteSiC M3e platform. The end-end onsemi combination of optimized, co-engineered power switches, drivers and controllers enable advanced features via integration, lowering overall system cost.

    Global energy demands are projected to soar over the next decade, making the need for increased power density in semiconductors paramount. onsemi is leading innovation across its silicon carbide roadmap – from die architectures to novel packaging techniques – that will continue to address the general industry demand for increased power density.

    With each new generation of silicon carbide, cell structures will be optimized to efficiently push more current through a smaller area, increasing power density. When coupled with the company’s advanced packaging techniques, onsemi will be able to maximize performance and reduce package size.

    By applying the concepts of Moore’s Law to the development of silicon carbide, onsemi can develop multiple generations in parallel and accelerate its roadmap to bring several new EliteSiC products to market at an accelerated pace through 2030.   

    “We are applying our decades of experience in power semiconductors to push the boundaries of speed and innovation in our engineering and manufacturing capabilities to meet the rising global energy demands,” said Dr. Mrinal Das, senior director of technical marketing, Power Solutions Group, onsemi. “There is a huge technical interdependency between the materials, device and package in silicon carbide. Having full ownership over these key aspects allows us to have control over the design and manufacturing process and bring new generations to market much faster.”

    The EliteSiC M3e MOSFET in the industry-standard TO-247-4L package is now sampling. 

    Original – onsemi

    Comments Off on onsemi Introduced Latest Generation EliteSiC M3e MOSFETs
  • Infineon Technologies and Amkor Technology to Drive Decarbonization and Sustainability

    Infineon Technologies and Amkor Technology to Drive Decarbonization and Sustainability

    3 Min Read

    Infineon Technologies AG has signed a Memorandum of Understanding with Amkor Technology, Inc. with a joint commitment to stimulate decarbonization and sustainability strategies across the supply chain.

    Expanding their partnership towards sustainability is the next step in the sustainability journey of both companies. Infineon and Amkor intend to fully leverage their classical Outsourced Semiconductor Assembly and Test (OSAT) business relationship in order to effectively tackle emissions along their supply chain. In April, both companies announced to operate a dedicated packaging and test center at Amkor’s manufacturing site in Porto, Portugal.

    As part of the cooperation for climate protection, Infineon and Amkor will actively engage with common suppliers to help them develop and implement effective decarbonization strategies. This will involve workshops, meetings, and the sharing of best practices and learnings related to decarbonization. The aim is to identify areas for improvement and support suppliers in setting science-based emissions reduction targets in line with the Science Based Targets initiative. Both companies are committed to providing ongoing guidance, fostering exchange, and tracking progress to drive continuous improvement across the common supply chain.

    “Infineon has made excellent progress towards its aim to become CO 2-neutral for scope 1 and 2 by 2030, as the company more than halved its emissions while doubling the revenue since 2019. Supply-chain-related Scope-3-emissions represent the highest share of total emissions at Infineon and are the hardest ones to minimize,” said Angelique van der Burg, Chief Procurement Officer at Infineon. “That makes it even more important to include them in our efforts. But no one can do it alone. We need to actively collaborate and drive innovation with our suppliers if we want to effectively reduce CO 2 emissions. This is of ample importance not only for Infineon and Amkor, but also for society at large. Therefore, we are happy to join forces with Amkor on this.”

    “Amkor is excited to deepen its partnership with Infineon through this strategic collaboration. Addressing Scope 3 is the most challenging part of the decarbonization journey, and we anticipate mutual benefits from this collective work in undertaking the challenge,” said Giel Rutten, President and Chief Executive Officer of Amkor. “This initiative is pivotal in achieving Amkor’s goal to reach net-zero emissions by 2050 by strengthening supply chain engagement through joint efforts. We look forward to collaborating with suppliers and invite them to join our endeavor to set ambitious science-based targets. Together, we are committed to driving positive environmental impact across our value chain.”

    To support Infineon’s science-based target commitment and enhance the collaboration with suppliers, Infineon introduced a supplier engagement program in 2023. Since then, the company has been working with more than a hundred suppliers to set and implement science-based targets. The partnership between Amkor and Infineon provides an impetus for the strategy of both companies to make science-based targets the standard for ambitious climate strategies in the semiconductor industry.

    Original – Infineon Technologies

    Comments Off on Infineon Technologies and Amkor Technology to Drive Decarbonization and Sustainability
  • Toshiba Adds Two New 150V N-channel Power MOSFETs Based upon Latest Generation U-MOS X-H Trench Process

    Toshiba Adds Two New 150V N-channel Power MOSFETs Based upon Latest Generation U-MOS X-H Trench Process

    2 Min Read

    Toshiba Electronics Europe GmbH added two new 150V N-channel power MOSFET products based upon their latest generation U-MOS X-H Trench process. The TPH1100CQ5 and TPH1400CQ5 devices are designed specifically for use in high-performance switching power supplies, such as those used in data centres and communication base stations as well as other industrial applications.

    With a maximum drain-source voltage (VDSS) rating of 150V and drain current (ID) handling 49A (TPH1100CQ5) and 32A (TPH1400CQ5), the new devices feature a maximum drain-source on-resistance RDS(ON).

    The new products offer improved reverse recovery characteristics that are critical in synchronous rectification applications. In the case of TPH1400CQ5, the reverse recovery charge (Qrr) is reduced by approximately 73% to 27nC (typ.) and the reverse recovery time (trr) of 36 ns (typ.) is approximately 45% faster compared with Toshiba’s existing TPH1400CQH, which offers the same voltage and RDS(ON).

    Used in synchronous rectification applications, the TPH1400CQ5 reduces the power loss of switching power supplies and helps improve efficiency. If the device is used in a circuit that does not operate in reverse recovery mode, the power loss is equivalent to that of the TPH1400CQH.

    When used in a circuit that operates in reverse recovery mode, the new products reduce spike voltages generated during switching, helping to improve EMI characteristics of designs, and reducing the need for external filtering. The devices are housed in a versatile, surface-mount SOP Advance(N) package measuring just 4.9mm x 6.1mm x 1.0mm.

    To support designers, Toshiba has developed a G0 SPICE model for rapid verification of the circuit function as well as highly accurate G2 SPICE models, for accurate reproduction of transient characteristics. 

    Shipments of the new devices start today, and Toshiba will continue to expand their lineup of power MOSFETs that help improve equipment efficiency.

    Original – Toshiba

    Comments Off on Toshiba Adds Two New 150V N-channel Power MOSFETs Based upon Latest Generation U-MOS X-H Trench Process