-
GaN / LATEST NEWS / PRODUCT & TECHNOLOGY / WBG2 Min Read
Navitas Semiconductor announced GaNSlim™, a new generation of highly-integrated GaN power ICs that will further simplify and speed the development of small form factor, high-power-density applications by offering the highest level of integration and thermal performance.
GaNSlim enables the simplest, fastest, and smallest system design by integrating drive, control, and protection, with integrated EMI control and loss-less current sensing, all within a high thermal performance proprietary DPAK-4L package. Additionally, with an ultra-low startup current below 10 µA, GaNSlim devices are compatible with industry-standard SOT23-6 controllers and eliminate HV startup.
Integrated features such as loss-less current sensing eliminate external current sensing resistors and optimize system efficiency and reliability. Over-temperature protection ensures system robustness and auto sleep-mode increases light and no-load efficiency. Autonomous turn-on/off slew rate control maximizes efficiency and power density while reducing external component count, system cost and EMI.
GaNSlim features a patented, 4-pin, high-thermal-performance, low-profile, low-inductance, DPAK package. This package enables 7 °C lower temperature operation versus conventional alternatives, supporting high-power-density designs with ratings up to 500 W. Target applications include chargers for mobile devices and laptops, TV power supplies, lighting, etc.
“Our GaN focus is on integrated devices that enable high-efficiency, high-performance power conversion with the simplest designs and the shortest possible time-to-market,” says Reyn Zhan, Sr. Manager of Technical Marketing. “Our new GaNSlim portfolio – built on integration, ease-of-use, and low-cost manufacturing methods, – continues to grow the customer pipeline with over 50 new projects already identified. GaNSlim increases our GaN addressable market by enabling lower system costs compared to silicon designs for many applications, targeting applications under 500 W across mobile, consumer and home appliance.”
Devices in the NV614x GaNSlim family are rated at 700 V with RDS(ON) ratings from 120 mΩ to 330 mΩ and are available in versions optimized for both isolated and non-isolated topologies.
As with other Navitas GaN ICs, GaNSlim devices are supplied with an industry-leading twenty-year warranty, while demo boards for QR flyback, single-stage PFC, boost PFC plus QR flyback and TV power supply designs allow for rapid evaluation and selection of the optimum device for a given application.
Original – Navitas Semiconductor
-
Infineon Technologies AG is intensifying its collaboration with suppliers to further reduce CO 2 emissions along the whole supply chain. Infineon hosted its first ever Supplier Sustainability Summit to further stimulate collaboration and incentivize and support suppliers to accelerate their decarbonization journeys. The virtual event brought together about 100 top semiconductor industry suppliers.
“In order to meet our ambitious targets, we need you, our suppliers,” said Elke Reichart, Member of the Board and Chief Digital and Sustainability Officer at Infineon, during her welcome message. “Infineon’s scope 3 emissions make up the lion’s share of our footprint, especially the materials we source from our suppliers. Therefore, we very much look forward to joining forces with you. Together, we can stimulate and implement decarbonization strategies even better.”
Collaboration with suppliers is a fundamental part of Infineon’s overall sustainability strategy. The company has already made significant progress on its way to reaching climate neutrality by 2030; since 2019 Infineon has halved its CO 2 emissions (scope 1 and 2) while doubling revenue at the same time. In December 2023, Infineon added a commitment to setting a science-based target that includes the supply chain (scope 3). The procurement team is actively working with over 100 suppliers, engaging them to define their own science-based targets and implement appropriate reduction measures.
The Supplier Sustainability Summit was an excellent opportunity for Infineon to share learnings from its own climate strategy and journey and to facilitate exchange of best practices among suppliers. For instance, experts from the Infineon electricity procurement team gave insights from their hands-on experience in achieving 100 percent renewable electricity by 2025; whereas two suppliers shared their expertise in effectively setting science-based targets. The topic was deepened in a panel discussion with Infineon leaders and an expert from the CDP (formerly the Carbon Disclosure Project) that offered further practical advice to attendees.
Infineon’s Green Award recognizes and honors suppliers who demonstrated outstanding environmental commitment and advancements throughout the past year. The “Best Performance Award” went to Applied Materials Inc. for its ambitious climate strategy, including a 1.5°C science-based target and the company’s innovative “Xchange” program. As part of the program Infineon is directly collaborating with Applied Materials to increase resource efficiency and reduce emissions. The program enables take-back and refurbishment of spare parts for complex semiconductor equipment, thereby building on the circular economy to create environmental and business benefits for both parties.
The “Best Improvement Award” winner is Sumco Corporation, that has made remarkable progress in environmental sustainability throughout the past year. The Japan-based company is the first silicon wafer supplier to make a public commitment to setting a science-based target. Following discussions at the top leadership level, Sumco acted at an impressive speed, accelerating existing carbon reduction targets and expanding renewable electricity sourcing.
In the category of companies with less than one billion euros revenue, the “Best Improvement Award” went to iwis SE & Co. KG. The Munich-based, family-owned company serves as a great example to many with its ambitious “Zero Carbon 2040 program” and science-based target commitment. Infineon recognizes the proactive approach towards improving the environmental impact of operations and supply chain and the integration of climate targets in the environmental management system at the sites.
“We would like to applaud the winners of our Green Awards: Applied Materials, Sumco and iwis for stepping up and taking responsibility for environmental sustainability and performance,” said Angelique van der Burg, Chief Procurement Officer at Infineon and host of the day. “We believe that this performance will motivate our whole supplier base to raise the bar higher and follow their example. Now let’s make the best practice a standard practice.”
Original – Infineon Technologies
-
LATEST NEWS / PRODUCT & TECHNOLOGY2 Min Read
MCC Semi unveiled the latest selection of 5000W TVS diodes designed to provide superior protection against transient voltage spikes. Whether caused by lightning or other electrical disturbances, voltage surges can add up to costly damage and system failures without proper safeguards in place. That’s where our 5000W TVS solutions come in.
With a broad range of voltages — from 11V to 400V — and a compact yet powerful SMC package, these transient voltage suppressors (TVS) optimize space on the board without sacrificing performance.
Leveraging glass-passivated junction technology, these TVS diodes ensure the highest durability and reliability in demanding environments at operating junction temperatures of up to 175°C. They also boast IEC 61000-4-2 ESD ratings of 30kV for air and contact discharge for enhanced protection during electrostatic discharge events.
Rapid response times with capacitance typically less than 3,000 pF and impressive clamping capabilities assure sensitive electronic components are adequately protected, and a leakage current less than 2µA above 11V reduces power losses.
Available in unidirectional and bidirectional configurations, MCC’s 5000W TVS diodes meet diverse application needs while reducing maintenance costs and boosting overall reliability.
Features & Benefits:
- IEC 61000-4-2 ESD Protection: 30kV (Air) and 30kV (Contact) for solid electrostatic discharge protection.
- Maximum Operating Junction Temperature: Rated up to 175°C for reliable operation in high-temperature environments.
- Ultra-Fast Response Time: Capacitance typically less than 3000 pF from 0V to breakdown voltage minimum, ensuring immediate protection.
- Low Leakage Current: Typical ID less than 2µA from 11V to minimize power loss.
Original – Micro Commercial Components
-
In battery-powered applications such as motor drives and switched-mode power supplies (SMPS), the power supply architecture often requires that a module can be disconnected from the main supply rail when a fault occurs in that module. To achieve this functionality, it is common to use high-side disconnect switches (e.g. MOSFETs) to prevent a load short circuit from affecting the battery.
Infineon Technologies AG introduced the EiceDRIVER™ 1EDL8011, a high-side gate driver designed to protect battery-powered applications such as cordless power tools, robotics, e-bikes, and vacuum cleaners in the event of a fault.
The device provides fast turn-on and turn-off of high-side N-channel MOSFETs with its high gate current capabilities. It consists of an integrated charge pump with an external capacitor to provide strong start-up. The internal charge pump provides the MOSFET gate voltage when the operating input voltage is low. The gate driver IC manages inrush current and provides fault protection. Undervoltage Lockout (UVLO) protection at input voltage prevents the device from operating under hazardous conditions. The driver is available in a DSO-8 package, making it ideal for space-constrained designs. It includes overcurrent protection (OCP), adjustable current setting threshold, time delay and a safe start-up mechanism with flexible blanking during MOSFET turn-on transitions.
The 1EDL8011 has a wide operating voltage range of 8 V to 125 V and a high gate sinking current of up to 1 A, allowing for efficient switching. Additionally, the product has an extremely low off-mode quiescent current of 1 µA, helping to minimize power consumption in sleep mode. The device also includes a V DS sense feature that is used to trigger an overcurrent shutdown by monitoring the drain-to-source voltage of the disconnect MOSFET.
Infineon will be showcasing a demo featuring the 1EDL8011 at its global technology forum OktoberTech™ 2024 in Silicon Valley on 17 October. The 1EDL8011 is available now. Further information can be found at www.infineon.com/1edl8011.
Original – Infineon Technologies
-
Aehr Test Systems announced financial results for its first quarter of fiscal 2025 ended August 30, 2024.
Fiscal First Quarter Financial Results:
- Net revenue was $13.1 million, compared to $20.6 million in the first quarter of fiscal 2024.
- GAAP net income was $0.7 million, or $0.02 per diluted share, compared to GAAP net income of $4.7 million, or $0.16 per diluted share, in the first quarter of fiscal 2024.
- Non-GAAP net income, which excludes the impact of stock-based compensation, acquisition-related costs, and amortization of intangible assets, was $2.2 million, or $0.07 per diluted share, compared to non-GAAP net income of $5.2 million, or $0.18 per diluted share, in the first quarter of fiscal 2024.
- Bookings were $16.8 million for the quarter.
- Backlog as of August 30, 2024 was $16.6 million.
- Total cash, cash equivalents and restricted cash as of August 30, 2024 were $40.8 million, compared to $49.3 million at May 31, 2024, reflecting $10.6 million in net cash paid during the quarter for the acquisition of Incal Technology, Inc.
Gayn Erickson, President and CEO of Aehr Test Systems, commented:
“We finished the first quarter with revenue and non-GAAP net income ahead of consensus estimates and are off to a good start to our fiscal year. Silicon carbide wafer level burn-in test systems and full wafer contactors are poised to be key contributors to revenue again this year. We are also forecasting material bookings and revenue contributions from several other markets this fiscal year, as we are successfully executing on our strategy to expand our test and burn-in products into other large and fast-growing markets such as artificial intelligence processors, gallium nitride power semiconductors, hard disk drive components and flash memory devices.
“We have been seeing a stabilization and increasingly positive discussions within the silicon carbide power semiconductor market over the past quarter. Electric vehicle (EV) suppliers are clearly moving towards silicon carbide in integrated modules, combining silicon carbide MOSFETs into single packages to meet the industry’s power, efficiency, and cost-effectiveness demands. Due to the need for extensive test and burn-in of these devices to ensure reliability for mission-critical applications like EVs, the benefits of conducting this screening at the wafer level before integrating them into modules, which may sometimes contain 32 or more other devices, are becoming clear. The process improves yields and reduces costs, driving demand for wafer level burn-in, an area where Aehr Test stands as the low-cost leader and proven solution for this critical testing. We are highly optimistic about our silicon carbide business and expect it to gain momentum over the next few quarters. Our silicon carbide customers are forecasting capacity expansion needs in calendar 2025, with several anticipating purchases of one or two systems in early 2025, followed by production volumes in the second half of the year, and ramping further into 2026.
“Meanwhile, we continue to see strong demand for our FOX WaferPakTM full wafer Contactors for silicon carbide, driven by a record number of new device designs started this past quarter. These designs are expected to lead to additional WaferPak purchases for engineering qualification as well to volume production orders as they advance to production. We had another solid quarter for WaferPak sales, generating over $12 million in revenue from WaferPaks in the first quarter.
“We are also making steady progress on our previously announced benchmarks and engagements with new silicon carbide device and module suppliers. We are confident that we will add several new silicon carbide customers this year, establishing our solution as their tool of record for volume production. Additionally, silicon carbide is gaining traction in applications beyond electric vehicles, such as solar, industrial, and data centers, which will expand our addressable markets.
“We are now in negotiations with our first gallium nitride (GaN) semiconductor customer for volume production wafer level test and burn-in of their devices. This past year, this customer purchased a significant number of WaferPaks to successfully qualify a wide range of GaN device types aimed at multiple markets, including consumer, industrial, and automotive. In addition, we have had increased discussions and engagements with multiple potential new GaN suppliers. We believe GaN is a significant up and coming technology for power semiconductors. With a forecasted CAGR of more than 40% to over $2 billion in GaN devices sold annually by 2029, it has the potential to be a significant market opportunity for Aehr’s wafer level solutions.
“Last quarter, we announced that an Artificial Intelligence (AI) accelerator company committed to evaluating our FOXTM solution for wafer level burn-in of their high-power processors. This evaluation is underway at our Fremont facility, where multiple wafers are being tested using our proprietary WaferPaks and new high-power FOX-XP and NP systems, which provide up to 3500 watts of power delivery and thermal control per wafer. We are delivering over 2000 amperes of current to a single 300 mm wafer, allowing us to burn-in numerous processors with our proprietary test modes. The evaluation is progressing very well, and once we demonstrate successful wafer level test results and throughput, we anticipate they will adopt our high-power FOX-XP systems for production of their next-generation AI processors, beginning this fiscal year.
“During the quarter we announced and completed our acquisition of Incal Technology, Inc. We are excited to bring the combined strengths of both companies to market as we begin engaging with Incal’s customers, including many AI industry leaders. Customer feedback to this acquisition has been overwhelmingly positive, with several meetings held over the past few weeks where some customers indicated increased forecasts for engineering qualification as well as for volume production.
“Last month, we were pleased to announce the first volume production orders for Incal’s new Sonoma ultra-high-power semiconductor packaged part test and burn-in solution designed for AI accelerators, graphics processors, network processors, and high-performance computing processors. These orders were placed by a large-scale data center hyperscaler that provides computing power and storage capacity to millions of users worldwide. The integration with Incal is progressing well. We have already shipped several systems since the acquisition, and we plan to consolidate personnel and manufacturing into Aehr’s Fremont facility by the end of the fiscal year.
“Last quarter, we announced a key customer in the hard disk drive space that is now forecasting a production ramp-up starting this fiscal year for a new high-volume data storage device application. This customer is finalizing their capacity requirements, and we expect this ramp-up to drive orders for multiple FOX-CP production systems and WaferPak Contactors, with shipments likely occurring in the second half of this fiscal year. We see the data storage market, along with various devices supporting the global 5G expansion, as new growth opportunities for our systems, as these markets require devices with exceptionally high levels of quality and long-term reliability.
“With all of these customer engagements, market opportunities, and the products to address them, we are very optimistic about the year ahead, and we are reaffirming our financial guidance for revenue growth and profitability for the year.”
For the fiscal year ending May 30, 2025, Aehr is reiterating its previously provided guidance for total revenue of at least $70 million and net profit before taxes of at least 10% of revenue.
Original – Aehr Test Systems
-
Infineon Technologies AG announced a partnership with Canada-based AWL-Electricity Inc., a pioneer in MHz resonant capacitive coupling power transfer technology. Infineon provides AWL-E with CoolGaN™ GS61008P allowing the development of advanced wireless power solutions, enabling new ways to solve power challenges in various industries.
The partnership combines Infineon’s cutting-edge gallium nitride (GaN) technology with AWL-E’s innovative MHz resonant capacitive coupling power transfer system, achieving industry-benchmark wireless power efficiencies. Infineon’s GaN transistor technology offers highest efficiency and highest power density while operating at highest switching frequencies.
This enables AWL-E to increase its system lifetime, reduces downtime and operating costs, and improves ease-of-use for consumers. In the automotive sector, the technology enables a new level of interior experiences and seat dynamics. In industrial systems, it provides near-unconstrained levels of design freedom, such as for automated guided vehicles or robotic applications. Additionally, the technology allows for a fully sealed system design, eliminating the need for charging ports which contributes to reducing global consumption of batteries.
“With our partner approach we prove once more the ability to unlocking the full system-level benefits of Infineon’s CoolGaN technology, enabling compactness and efficiency,” said Falk Herm, Global Partnership & Ecosystem Management at Infineon’s Power & Sensor Systems (PSS) Division at Infineon. “The combination of AWL-E and Infineon’s complementary capabilities demonstrates how the features of GaN, namely operating at MHz frequencies, change the paradigm of what can be done with power transistors, driving greener and better performing products.”
“Infineon uniquely brings you into their family with a recognition that a strong ecosystem ultimately solves today’s power needs,” said Francis Beauchamp-Verdon, Co-founder, VP and Business Development Director at AWL-E. “Infineon’s GaN transistors, eval boards, and partner opportunities have boosted acceptance of our GaN-based MHz power coupling systems.”
Infineon is a leader in the power semiconductor market and currently the only manufacturer mastering all power technologies while offering the broadest product and technology portfolio of silicon (such as SJ MOSFETs, IGBTs), silicon carbide (such as Schottky diodes and MOSFETs) and gallium-nitride-based (e-mode HEMT) devices, covering bare die, discretes, and modules.
Original – Infineon Technologies
-
GaN / LATEST NEWS / PRODUCT & TECHNOLOGY / WBG3 Min Read
Navitas Semiconductor announced that its high-power GaNSafe family is now available in a TOLT (Transistor Outline Leaded Top-side cooling) package.
The GaNSafe family has been specifically created to serve demanding, high-power applications, such as AI data centers, solar/energy storage, and industrial markets. Navitas 4th generation integrates control, drive, sensing, and critical protection features that enable unprecedented reliability and robustness. GaNSafe is the world’s safest GaN with short-circuit protection (350ns max latency), 2kV ESD protection on all pins, elimination of negative gate drive, and programmable slew rate control. All these features are controlled with 4-pins, allowing the package to be treated like a discrete GaN FET, requiring no VCC pin.
The TOLT packaging enhances thermal dissipation through the top side of the package, allowing heat to be dissipated directly to the heatsink (not through the PCBA). This enables the reduction of operating temperature and increases current capability, resulting in the highest level of system power density, efficiency, and reliability.
“With over 200 million units shipped and supplied with a 20-year warranty, Navitas’ highly integrated high-power GaNSafe ICs are proven to deliver performance and reliability while simplifying Design-IN for systems up to 22kW,” says Charles Bailley, Senior Director of Business Development. “As the most protected, reliable, and safe GaN devices in the industry, GaNSafe took our technology into mainstream applications above 1kW. Now, with the enhanced thermal dissipation of the TOLT package, we are enabling customers to deliver even better performance, efficiency, power density, and reliability in even the most demanding applications.”
Suitable for applications from 1 kW to 22 kW, 650 V GaNSafe in TOLT packaging is available with a range of RDS(ON)MAX from 25 to 98 mΩ. Integrated features and functions include:
- High-speed short-circuit protection, with autonomous ‘detect and protect’ with ultra-fast 350 ns / 50 ns latency.
- Protected, regulated, integrated gate-drive control, with zero gate-source loop inductance for reliable high-speed 2 MHz switching capability to maximize application power density.
- Electrostatic discharge (ESD) protection of 2 kV, compared to zero for discrete GaN transistors.
- 650 V continuous, and 800 V transient voltage capability for extraordinary application conditions.
- Integrated Miller Clamp (no negative gate bias, higher 3rd quadrant efficiency)
- Programmable turn-on and turn-off speeds (dV/dt) to simplify EMI regulatory requirements.
- Simple 4-pin device, allowing the package to be treated like a discrete GaN and requiring no additional VCC pin
- Robust, thermally enhanced packaging: ultra-low RQ_JUNC-AMB and board-level thermal cycling (BLTC) Reliability
In addition to the new ICs, Navitas will be offering reference design platforms based on GaNSafe TOLT for applications including data center power supplies and EV on-board chargers. These system platforms include complete design collateral with fully tested hardware, embedded software, schematics, bill-of-materials, layout, simulation, and hardware test results.
Original – Navitas Semiconductor
-
LATEST NEWS / PRODUCT & TECHNOLOGY2 Min Read
Littelfuse, Inc. announced the SMFA Asymmetrical Series Surface-Mount TVS Diode, the first-to-market asymmetrical TVS solution specifically designed to protect Silicon Carbide (SiC) MOSFET gates from overvoltage events. As SiC MOSFETs become increasingly popular due to their faster switching speeds and superior efficiency compared to traditional Silicon MOSFETs and IGBTs, the need for robust gate protection has never been greater. The SMFA Asymmetrical Series offers an innovative, single-component solution that significantly enhances circuit reliability while simplifying design.
The SMFA Asymmetrical Series is the only TVS diode on the market engineered specifically for the unique gate protection requirements of SiC MOSFETs. Unlike traditional solutions that require multiple Zener or TVS diodes, the SMFA Series effectively protects against ringing and overshoot phenomena in gate drive circuits using a single component, saving valuable PCB space and reducing the complexity of circuit designs.
The SMFA Asymmetrical Series Surface-Mount TVS Diode offers the following key features and benefits:
- Asymmetrical Design: The SMFA Series is tailored to the specific negative and positive gate voltage ratings of SiC MOSFETs, ensuring precise and reliable protection.
- Single-Component Solution: Replaces multiple Zener and TVS diodes, reducing the number of components and simplifying circuit layout.
- Space Efficiency: By combining multiple protection functions into one component, the SMFA Series minimizes PCB space usage, allowing for more compact and efficient designs.
- Compatibility: The SMFA Asymmetrical Series is compatible with all available Littelfuse and other leading SiC MOSFETs, making it a versatile solution for various applications.
“The SMFA Asymmetric TVS Diodes protect valuable SiC MOSFETs from gate failures using a single component solution that easily replaces multiple Zener and TVS diodes,” said Ben Huang, Director of Product Marketing at Littelfuse. “This unique solution also saves valuable PCB space while reducing the number of components required.”
The SMFA Asymmetrical Series is ideal for a variety of demanding applications where SiC MOSFETs are used, including:
- AI / Data Center Server Power Supplies: Enhances the reliability and efficiency of critical power supplies in high-performance computing environments.
- High-Efficiency Electric Vehicle Infrastructure (EVI) Power Systems: Provides robust gate protection in EV charging stations and related power systems, ensuring longevity and performance.
- High-Reliability Semiconductor/Industrial Equipment Power Supplies: Protects essential power supplies in industrial and semiconductor manufacturing environments, where reliability and uptime are paramount.
Original – Littelfuse
-
LATEST NEWS / SiC / WBG3 Min Read
CISSOID announced that its SiC Inverter Control Module (ICM) has been adopted by Hydro Leduc, a renowned manufacturer of hydraulic components, for its new highly efficient and modular Electric Power Take-Off (ePTO). This new ePTO solution supports the electrification of trucks and other off-road vehicles. CISSOID’s ICM not only powers and controls Hydro Leduc’s compact and efficient inverter but also contributed to greatly accelerate its development cycle.
Hydro Leduc’s new ePTO solution offers an optimized hydraulic supply to high power tools in e-trucks and other off-road vehicles that remain driven by hydraulic actuators. Hydro Leduc’s new ePTO represents a significant advancement in electric and hydraulic transmissions with their ME230, a 76 kW brushless electric motor designed to be paired with an inverter for applications up to 650Vdc.
This motor, compatible with DIN ISO14 standards and equipped with an efficient cooling system, forms a complete solution with the new series of fixed displacement spherical piston pumps: the XRe, available in 41 or 63 cm³ displacements.
Specially adapted for E-PTO mounting, the XRe series is quiet and offers remarkable efficiency, reduced pulsations due to its 9-piston design, and high speed in self-priming mode. Together, the ME230 and XRe provide high-performance and efficient electro-hydraulic solutions for a variety of applications.
CISSOID’s ICM optimally integrates a 3-Phase 1200V/340A-550A SiC Power Module, enabling efficient power conversion, a gate driver board designed for safe driving of the fast-switching SiC transistors, and a control board embedding a powerful real-time microprocessor. This hardware platform has been delivered together with the OLEA® APP INVERTER software optimized for the efficient and safe control of electric motors.
Olivier Savinois, Managing Director at EL MOTION (the sister company of Hydro Leduc, specialized in the design and manufacturing of electrical components and motors), said “We have been very pleased to work with CISSOID on the development of our new ePTO inverter. Not only did their SiC Inverter Control Module completely match our needs, we also enjoyed outstanding support from their team. Especially due to the on-site calibration of our inverter and motor, during the design and validation phases. CISSOID’s modular inverter platform ties perfectly with our scalable ePTO solution.”
Emmanuel Poli, VP Sales at CISSOID, said: “It was really exciting to work with the Hydro Leduc team, who rapidly understood how powerful it would be to leverage our ICM to accelerate the design of their inverter. We were impressed by the speed and agility of Hydro Leduc’s engineers in integrating our hardware and software solution into their motor drive.”
Original – CISSOID