• Navitas Semiconductor Invites Visitors to APEC 2024

    Navitas Semiconductor Invites Visitors to APEC 2024

    3 Min Read

    Navitas Semiconductor invites visitors to experience “Planet Navitas” and collaborate to “Electrify Our World” at APEC 2024 (Long Beach, CA, February 26th-29th, 2024).

    Since its inception in 1985, the Applied Power Electronics Conference (APEC) has become the world’s premier event in power electronics, with high-caliber, peer-reviewed technical content from industry and academia. The APEC 2016 keynote by Dan Kinzer, COO / CTO and co-founder, was the public debut for start-up Navitas and GaNFast power ICs.

    Following the mission to “Electrify our World™”, the “Planet Navitas” exhibition booth invites visitors to discover how next-gen GaN and SiC technology enable the latest solutions for fully-electrified housing, transportation and industry. Examples range from TV power to home-appliance motors and compressors, EV charging, solar/micro-grid installations, and on to data center power systems. Each example highlights end-user benefits, such as increased portability, longer range, faster charging, and grid-independence, plus a focus on how low-carbon-footprint GaN and SiC technology can save over 6 Gtons/yr CO2 by 2050.

    “APEC is a significant event in the power industry calendar, with an intense schedule of customer discussions on new technologies and systems,” said Mr. Kinzer. “Complementary GaNFast™ and GeneSiC™ portfolios, with comprehensive, application-specific system design support accelerates customer time-to-market with sustainable performance advantages. ‘Planet Navitas’ represents the very real, inspiring implementation of GaN & SiC across the vast $22B/year market opportunity.”

    Major technology updates and releases include GaNSafe – the world’s most-protected, most-reliable and highest-performance GaN power, Gen-4 GaNSense Half-Bridge ICs – the most integrated GaN devices, Gen-3 Fast SiC power FETs – for high-power performance, and breakthrough bi-directional GaN for game-changing motor drive and energy-storage applications.

    APEC 2024 will take place at the Long Beach Convention & Entertainment Center, 300 East Ocean Boulevard, Long Beach, CA 90802, with exhibition running from February 26th – 28th. “Planet Navitas” is featured at booth #1353.

    Technical presentations:

    • Tuesday 27th February
      • “Reducing System Cost with GaN HEMTs in Motor Drive Applications”
        • 8:55am, IS05.2, Alfred Hesener, Sr. Dir. Industrial & Consumer
        • 10:40am, PSTT02.6, Bin Li, Dir. Applications
        • 11:40am, PSTT01.9, Xiucheng Huang, Sr. Director
        • 3:45pm, exhibitor presentation, location: 101B
        “A High Density 400 W DC/DC Power Module with Integrated Planar Transformer and Half Bridge GaN IC”“An Optimization Method for Planar Transformer Winding Losses in GaN Based Multi-Output Flyback Converter”“Electrify Our World” with Next-gen GaNFast and GeneSiC Power, Dan Kinzer
    • Thursday 29th February
      • “SiC & Package Innovations in Power Modules”
        • 8:30am-11:20am, IS19, Stephen Oliver, Session Chair.
        • 8:55am, PSTIS21.2, Tom Ribarich, Sr Dir. Strategic Marketing
        • 1:30pm-3:10pm, IS27, Llew-Vaughan-Edmunds, Session Chair
        • 2:20pm, IS27-3, Stephen Oliver, VP Corp Mktg & IR, and Llew Vaughan-Edmunds, Sr Dir. GeneSiC
        “GaN Half-Bridge Power IC and AHB/Totem-Pole Topologies Enable 240W, 150cc, PD3.1 Solution with 95.5% Efficiency”“Emerging Applications for Power Electronics”“High-Voltage SiC Optimized for Megawatt Charging in EV Long-haul Trucking”

    Student Job Fair:

    • From Los Angeles to Shanghai, careers at Navitas span cutting-edge IC design and innovative applications engineering to pioneering research and ensuring customer success and revenue growth. Meet the experts and join the team!
      • Tuesday, February 27, 1:30pm-5pm, Regency Ballroom ABC of the Hyatt Regency hotel, right next to the Long Beach Convention Center, with Shaun Sandera, Sr. Human Resources Manager

    To schedule a meeting with the Navitas team, email info@navitassemi.com, or select from the bookings calendars below:

    Customer (Private Room): https://bit.ly/navitas-apec-24-customer-private-room
    Customer Meeting (On-Booth): https://bit.ly/navitas-apec-24-customer-on-booth

    Original – Navitas Semiconductor

    Comments Off on Navitas Semiconductor Invites Visitors to APEC 2024
  • Moov Launches Equipment Management Software for Semiconductor Manufacturers

    Moov Launches Equipment Management Software for Semiconductor Manufacturers

    3 Min Read

    Moov, the largest and fastest-growing global marketplace for used semiconductor equipment, announced the release of its new Equipment Management Software (EMS) for semiconductor manufacturers. Moov’s Equipment Management Software helps manufacturers track and understand what equipment assets they own across fabrication centers (fabs), the condition of these tools, and the resale value of these assets based on data from Moov’s global marketplace.

    Today, semiconductor manufacturers have limited insight into the equipment they own across fabs, its condition, and how to maximize its value once it is considered depreciated and/or has outlived its initial production line.

    In building EMS, Moov will continue to help manufacturers operationalize a more data-driven approach to deciding how to leverage idle or underutilized capital equipment – whether that means transferring equipment between fabs, scrapping equipment, selling parts, or selling whole systems to maximize the lifetime value of these assets.

    “Semiconductor manufacturers have neither the tools nor the data to make informed decisions on what to do with capital equipment assets that may be depreciated on their books but still have real market value,” said Moov cofounder and CEO, Steven Zhou.

    “Moov’s Equipment Management Software helps manufacturers gain a unified view of their equipment across fabs and augments equipment data with marketplace data pulling from millions of data points on pricing, supply, demand, geography, installed base, and more to help chipmakers make strategic decisions on how to maximize the value of these financial assets based on true market conditions.”

    To help manufacturers simplify the process of deploying EMS across fabs, Moov is offering free equipment audits and data onboarding. Moov will audit and inspect tools across a manufacturer’s fabs, and document tool make, model, location, condition, and specifications in the EMS. Once a manufacturer’s assets are tracked in the EMS, the system will automatically pull in data on pricing and demand from Moov’s global marketplace for used semiconductor manufacturing equipment.

    Manufacturers can then leverage this holistic view of their assets, which are indexed and easily searchable across locations, to decide what to do with underutilized equipment and parts. If manufacturers decide to sell assets, they can easily do so in 2-clicks through a direct integration with Moov’s global resale marketplace.

    “We’re taking all of the legwork out of implementing a holistic system for tracking semiconductor manufacturing equipment across fabs, in order to empower manufacturers to reduce waste and redundancies, more quickly respond to shifting needs from fab to fab, and maximize the value of assets that may have hitherto been considered a write-off but have substantial market value,” said Zhou. 

    Historically, what to do with depreciated equipment has been considered an afterthought by chipmakers as the process of reselling equipment was onerous and fragmented, and the resale value of equipment low. However, equipment delays and shortages of the pandemic era, the rising demand for 200mm capacity, and changing procurement habits of manufacturers to diversify their capital equipment supply chains, have led to a surge in the resale value of semiconductor manufacturing equipment.

    At the same time, increased market pressures to improve both the financial and environmental sustainability of fabs has created the need for a better approach to maximizing the value of these 6-figure+ assets throughout their lifecycle.

    “With access to the world’s largest data set for the resale value of semiconductor manufacturing equipment, we felt it was our responsibility to build technology to help manufacturers better incorporate this data into their day-to-day decision-making process,” said Zhou.

    Original – Moov

    Comments Off on Moov Launches Equipment Management Software for Semiconductor Manufacturers
  • Infineon Technologies will Provide Sinexcel with Industry-Leading CoolSiC MOSFETs

    Infineon Technologies will Provide Sinexcel with Industry-Leading CoolSiC MOSFETs

    3 Min Read

    Infineon Technologies AG announced a partnership with Shenzhen based Sinexcel Electric Co., Ltd., a global leader in core power equipment and solutions for the Energy Internet. Infineon will provide Sinexcel with its industry-leading 1200 V CoolSiC™ MOSFET power semiconductor devices in combination with EiceDRIVER™ compact 1200 V single-channel isolated gate drive ICs to further improve the efficiency of energy storage systems.

    Driven by the carbon peaking and carbon neutrality strategy and the new energy wave, the domestic energy storage market has maintained sustained and rapid development in recent years. According to the Chinese Ministry of Industry and Information Technology, in the first half of 2023, the newly installed capacity of energy storage reached 8.63 GWh, equivalent to the total installed capacity of previous years.

    The efficiency and power density of energy storage systems are important factors of product competitiveness, while the size, weight and cost of energy storage systems are closely related to the energy conversion efficiency and directly affect the product cost. Therefore, power semiconductor components play a crucial role.

    “The SiC power solution is an important component for future green energy production and storage applications. Infineon’s cooperation with Sinexcel in the field of energy storage inverters enables energy storage systems to achieve advantages such as high efficiency, small size, and light weight, providing a solid guarantee for high-reliability and high-performance energy storage systems,” said Mr. Yu Daihui, Senior Vice President of Infineon Technologies and Head of Green Industrial Power Division in Greater China.

    “By using Infineon’s SiC devices, Sinexcel’s energy storage products are obviously more compact and flexible, with significantly higher efficiency and lower losses, which reduces the heat dissipation cost of systems, is conducive to the long-term efficient and stable operation of products, and helps end users improve their operational stability and shorten their return on investment cycle.

    This greatly improves the system competitiveness of our products and enhances the trust of clients in our energy storage products and the brand awareness of Sinexcel. We hope that in the future, Infineon will further provide high-performance and high-stability components to help enhance the competitiveness of Sinexcel’s products on the client side,” said Mr.Wei Xiaoliang, Deputy General Manager of Sinexcel.

    With more than 20 years of product development and application experience in the SiC field, Infineon has been working nonstop to develop more sophisticated SiC products. Due to their high power density, Infineon’s 1200 V CoolSiC MOSFETs can reduce losses by 50 percent and provide ~2 percent additional energy without increasing the battery size, which is especially beneficial for high-performance, lightweight and compact energy storage solutions.

    By using Infineon’s 1200 V CoolSiC MOSFETs and EiceDRIVER compact 1200 V single-channel isolated gate drive ICs, Sinexcel’s energy storage converters achieve high power density, minimum electromagnetic radiation and interference, high protection performance and high reliability. This allows a system efficiency of up to 98 percent, which is 1 percent higher than that of traditional solutions, reaching the industry-leading level and better meeting the needs of on-grid and off-grid energy storage applications in both domestic and overseas markets.

    Original – Infineon Technologies

    Comments Off on Infineon Technologies will Provide Sinexcel with Industry-Leading CoolSiC MOSFETs
  • Navitas Semiconductor and SHINRY Collaborate to Accelerate Development of New-Energy Vehicle Power Systems

    Navitas Semiconductor and SHINRY Collaborate to Accelerate Development of New-Energy Vehicle Power Systems

    3 Min Read

    Navitas Semiconductor and SHINRY, global industry leader of on-board power supply and strategic supplier to Honda, Hyundai, BYD, Geely, XPENG, BAIC and many more leading automobile manufacturers, announced the opening of an advanced, joint R&D power laboratory to accelerate the development of New-Energy Vehicle (NEV) power systems enabled by Navitas’ GaNFast™ technology.

    Next-gen gallium nitride (GaN) is replacing legacy silicon power chips due to superior high-frequency and high-efficiency characteristics. GaN delivers faster charging, faster acceleration and longer-range, accelerating market adoption of NEVs and the transition from fossil fuels to clean, renewable energy.

    On January 16th, 2024, Peter (Jingjun) Chen, COO of SHINRY, along with Navitas’ Gene Sheridan, CEO and Navitas’ Charles (Yingjie) Zha, VP and GM plus other senior executives attended the joint lab’s opening ceremony at SHINRY headquarters in Shenzhen.

    The joint lab accelerates development projects, with leading-edge GaN technology combining with innovative system-design skills and engineering talent to enable unprecedented high power density, lightweight, efficient designs that translate to faster charging and extended range, with faster time-to-market.

    The joint lab brings together experienced, highly-professional engineers from Navitas and SHINRY to build efficient, collaborative R&D platforms. Navitas’ own dedicated EV system Design Center, located in Shanghai will provide comprehensive technical support for the joint lab.

    Navitas will not only supply SHINRY with leading-edge, trusted power devices, but will also engage in system-level R&D from the initial stages of product specification and design, through to test platforms and customized packaging solutions. The result will be more efficient, higher power density, more reliable, and cost-effective power systems for NEVs.

    “SHINRY always pursues technological innovation. As early as 2012, SHINRY began applying Silicon Carbide (SiC) MOS, and in 2019, SHINRY initiated research on the application of GaN and has been actively seeking strategic partners.” said Peter (Jingjun) Chen, COO of SHINRY.

    “As an advanced supplier in the field, Navitas will assist in creating more advanced, energy-efficient, and higher-efficiency power system products. I believe the establishment of this joint lab will comprehensively accelerate the design and market launch of SHINRY’s products and further enhance the market competitiveness of SHINRY products.”

    “We are excited to join with SHINRY to establish a new lab for next-gen power semiconductors, assisting SHINRY in creating advanced power systems.” said Gene Sheridan, Navitas’ co-founder & CEO. “SHINRY’s mission to change the way of travel aligns closely with Navitas’ Electrify Our World™ mission. We believe that through our joint efforts, leading GaN technologies will enter the power systems of NEVs for more end-users, contributing to the vigorous growth of the new energy industry.

    Original – Navitas Semiconductor

    Comments Off on Navitas Semiconductor and SHINRY Collaborate to Accelerate Development of New-Energy Vehicle Power Systems
  • STMicroelectronics Announced Q4 and FY 2023 Financial Results

    STMicroelectronics Announced Q4 and FY 2023 Financial Results

    2 Min Read

    STMicroelectronics N.V. reported U.S. GAAP financial results for the fourth quarter ended December 31, 2023. STMicroelectronics reported fourth quarter net revenues of $4.28 billion, gross margin of 45.5%, operating margin of 23.9%, and net income of $1.08 billion or $1.14 diluted earnings per share.

    Jean-Marc Chery, STMicroelectronics President & CEO, commented:

    • “FY23 revenues increased 7.2% to $17.29 billion. Operating margin was 26.7% compared to 27.5% in FY22 and net income increased 6.3% to $4.21 billion. We invested $4.11 billion in net CAPEX while delivering free cash flow of $1.77 billion.”
    • “In Q4, ST delivered revenues and gross margin slightly below the mid-point of the guidance, with higher revenues in Personal Electronics offset by a softer growth rate in Automotive.”
    • “In Q4, our customer order bookings decreased compared to Q3. We continued to see stable end-demand in Automotive, no significant increase in Personal Electronics, and further deterioration in Industrial.”
    • “Our first quarter business outlook, at the mid-point, is for net revenues of $3.6 billion, decreasing year-overyear by 15.2% and decreasing sequentially by 15.9%; gross margin is expected to be about 42.3%.”
    • “For 2024, we plan to invest about $2.5 billion in net CAPEX.”
    • “We will drive the Company based on a plan for FY24 revenues in the range of $15.9 billion to $16.9 billion. Within this plan, we expect a gross margin in the low to mid-40’s.”

    Original – STMicroelectronics

    Comments Off on STMicroelectronics Announced Q4 and FY 2023 Financial Results
  • Infineon's GaN Systems Recognized as the “Graduate Of The Year”

    Infineon’s GaN Systems Recognized as the “Graduate Of The Year”

    2 Min Read

    Acquired by Infineon Technologies in October 2023, GaN Systems has been recognized as the “Graduate Of The Year” by The Global Cleantech 100. The announcement was made at Cleantech Forum North America in San Francisco.

    The award recognizes the exceptional contribution legacy GaN Systems has made to sustainable innovation and their successful management team as rated by the financial investors on the 80-member Cleantech Group Expert Panel. This 2024 award rounds out several years of recognition in GaN Systems’ sustainability journey which includes entry in to the Global Cleantech 100 Hall of Fame (1 of only 14 companies ever) and the 2023 Global Cleantech 100 winner (1 of only 100 companies globally in 2023).

    The acquisition of GaN Systems has significantly accelerated Infineon’s gallium nitride (GaN) roadmap and further strengthens its leadership in power systems by offering a broad product portfolio combined with leading edge application know-how in the development of GaN-based solutions. Infineon’s expertise and in-depth knowledge in GaN paves the way for more energy-efficient and CO 2-saving technology solutions that support decarbonization.

    “My congratulations go out to all legacy GaN Systems employees for this recognition and winning multiple Cleantech awards. We are glad to have these smart and curious minds on board at Infineon,” said Adam White, Division President at Power & Sensor Systems at Infineon. “Thanks to unrivalled R&D resources, a comprehensive understanding of applications and a large number of customer projects, Infineon now leverages the full potential of GaN Systems to become a leading GaN Powerhouse fostering the transformation towards green energy.”

    Cleantech® Group is a leading global authority on global cleantech innovation. The Global Cleantech 100 program has been running since 2009. This highly anticipated annual report publishes a list of companies with the most promising ideas in cleantech.

    Original – Infineon Technologies

    Comments Off on Infineon’s GaN Systems Recognized as the “Graduate Of The Year”
  • Infineon Technologies and Anker Innovations Announced Joint Innovation Application Center

    Infineon Technologies and Anker Innovations Announced Joint Innovation Application Center

    2 Min Read

    Infineon Technologies AG announced its joint Innovation Application Center in Shenzhen with Anker Innovations, a global leader in charging technology. With the center already fully operating, it is paving the way for more energy-efficient and CO2-saving charging solutions that support decarbonization.

    Driven by the growing consumer demand for faster charging solutions due to an increasing usage of mobile devices, laptops and other battery-powered devices, the idea of establishing an Anker-Infineon Innovation Application Center dated back to 2021. After two years of preparation, the joint lab now serves as R&D hub for industry experts to develop power-delivery (PD) fast charging solutions with higher power density, mainly based on Infineon’s next-generation Hybrid Flyback (HFB) controller product family and the CoolGaN™ IPS for fast chargers above 100W.

    Anker has already brought several successful products to the market, such as the industry-leading 100W+ fast charger device powered by Infineon’s CoolGaN in 2022. With the Innovation Application Center Anker and Infineon will even shorten the application cycle and accelerate the time to market for future products. 

    “Anker is an important customer for Infineon,” said Christian Burrer, Vice President of Systems & Application Marketing of Power & Sensor Systems Division at Infineon Technologies. “We have already started a strong cooperation in the charging field, with product and system solutions covering several Infineon product lines. In the field of PD charging, we provide our customers a comprehensive product portfolio, including state-of-the-art power controllers, first-class switching power supplies, leading silicon MOSFET and GaN transistor performance, and more.”

    Beyond charging solutions, the joint lab is focusing on a more diversified range of consumer applications, driven by Infineon’s expertise in wide-bandgap materials such as gallium nitride (GaN). The acquisition of GaN Systems in 2023 has significantly accelerated Infineon’s GaN roadmap and further strengthens its leadership in power systems through mastery of all relevant power semiconductor technologies.

    “In 2023, Anker achieved success in many markets such as China and Europe. This would not have been possible without Infineon’s GaN technology solutions and the strong collaboration between our companies. We look forward to even intensifying our partnership with Infineon”, said by Kang Xiong, General Manager of the charging business unit at Anker Technologies.

    Original – Infineon Technologies

    Comments Off on Infineon Technologies and Anker Innovations Announced Joint Innovation Application Center
  • Bourns Expands Sales Presence in Japan

    Bourns Expands Sales Presence in Japan

    1 Min Read

    Bourns, Inc. announced it is further expanding its sales presence in Japan by signing Macnica Altima Company as a new distributor partner. Macnica Altima Company was selected for their excellent Japanese Tier 1 customer relationships, especially those in the automotive market, and will be representing Bourns’ full line of standard component products.

    “Adding Macnica is part of Bourns’ strategic sales channel growth initiative in Asia. Bourns continues to realize increasing demand for our products from across the Asia-Pacific region. We were looking for a strong, knowledgeable business partner in Japan and found it with Macnica’s excellent sales team,” said James Harrington and Senior Vice President of Worldwide Sales at Bourns.

    “We are honored to be selected to represent Bourns’ innovative components in Japan. Macnica is known for our trusted sales and support teams that have particular knowledge of next generation vehicle applications. We offer the full strength of our organization’s market and technical expertise to Bourns in helping them realize continued growth and success in Japan,” said Kazuyuki Sawada, Vice President at Macnica Altima Company.

    Original – Bourns

    Comments Off on Bourns Expands Sales Presence in Japan
  • ROHM Added a Lineup of Compact 600V Super Junction MOSFETs

    ROHM Added a Lineup of Compact 600V Super Junction MOSFETs

    3 Min Read

    ROHM has added a lineup of compact 600V Super Junction MOSFETs R6004END4 / R6003KND4 / R6006KND4 / R6002JND4 / R6003JND4. These devices are ideal for small lighting power supplies, pumps, and motors.

    In recent years, power supplies for lighting and motors for pumps are required to be smaller as devices become more sophisticated – spurring the demand for compact MOSFETs that are essential for switching operation.

    Generally, however, it has been difficult to reduce the size of Super Junction MOSFETs while maintaining an optimal balance between high breakdown voltage and low ON resistance. In response, after reviewing the shape of the mounted chip, ROHM was able to develop 5 models in the SOT-223-3 package (6.50mm × 7.00mm × 1.66mm) – providing a smaller, lower profile form factor without compromising the performance of conventional products.

    Compared to the conventional TO-252 package (6.60mm × 10.00mm × 2.30mm), ROHM’s new products reduce area and thickness by 31% and 27% – contributing to smaller, lower profile applications. At the same time, the same land pattern (footprint) as the TO-252 package can be used, enabling mounting on existing circuit boards without modification.

    Offering distinctive features, three of the models optimized for compact power supplies. The R6004END4, characterized by low noise, is suitable for applications where noise is a concern, while the R6003KND4 and R6006KND4, capable of high-speed switching, are ideal for sets requiring low loss, high efficiency operation.

    The R6002JND4 and R6003JND4 utilize proprietary PrestoMOS technology to achieve significantly lower switching losses by speeding up reverse recovery time (trr), making them well-suited for motors-equipped devices.

    Supporting materials such as application notes, technical documents, and SPICE simulation models for each product are available on ROHM’s website free of charge to enable quick market introduction.

    Going forward, ROHM will continue to expand its Super Junction MOSFET lineup in different packages and even lower ON resistances that contribute to solving social issues such as environmental protection by reducing power consumption in variety devices.

    Product Lineup

    For compact power supplies

    Part No.Data
    Sheet
    Polarity
    [ch]
    VDSS
    [V]
    ID
    [A]
    RDS(on) [Ω]
    *VGS=10V
    Qg [nC]
    *VGS=10V
    Package
    [mm]
    Typ.Max.Typ.
    R6004END4N6002.40.900.9815Package
    SOT-223-3
    (6.50×7.00×1.66)
    R6003KND41.31.301.508
    R6006KND42.80.720.8712

    For motors

    Part No.Data
    Sheet
    Polarity
    [ch]
    VDSS
    [V]
    ID
    [A]
    RDS(on) [Ω]
    *VGS=15V
    Qg [nC]
    *VGS=15V
    trr
    [ns]
    Package
    [mm]
    Typ.Max.Typ.Typ.
    R6002JND4N6001.02.503.25740Package
    SOT-223-3
    (6.50×7.00×1.66)
    R6003JND41.31.652.15842

    Application Examples

    • R6004END4 / R6003KND4 / R6006KND4: Lighting, Air conditioners, Refrigerators, etc.
    • R6002JND4 / R6003JND4: Motors for pumps, fans, copiers, etc.

    Original – ROHM

    Comments Off on ROHM Added a Lineup of Compact 600V Super Junction MOSFETs
  • Alpha and Omega Semiconductor Added a 100V MOSFET in DFN 5x6 Package

    Alpha and Omega Semiconductor Added a 100V MOSFET in DFN 5×6 Package

    2 Min Read

    Alpha and Omega Semiconductor Limited (AOS) announced the AONA66916, a 100V MOSFET packaged in the company’s innovatively designed top and bottom side cooling DFN 5 x 6 package. Designers have long trusted AOS power semiconductors as essential components that help them meet a wide variety of high performance application requirements.

    Now, in delivering a state-of-the-art package that keeps its semiconductor products cooler, AOS is taking a huge step in enabling engineers to develop more efficient designs in telecommunications and industrial applications that must frequently operate in harsh conditions.

    Typically, when using the standard DFN 5×6 package, the bottom contact is the main contributor for cooling, and most of the heat generated by the Power MOSFETs will be transferred to the PCB. This increases the PCB thermal management design considerations to meet system requirements. AOS’ new top and bottom cooling DFN 5×6 package is designed to achieve the highest heat transfer between the exposed top contact and heat sink due to its large surface contact area construction.

    This allows the device to achieve a low thermal resistance (Rthc-top max) of 0.5°C / W with results being transferred to the PCB board, enabling significant thermal performance improvements. The top exposed DFN 5×6 package of the AONA66916 shares the same 5mm x 6mm footprint as AOS’ standard DFN 5×6 package, eliminating the need to modify existing PCB layouts.

    Another benefit of the AONA66916 is that it utilizes AOS’ 100V AlphaSGT™ technology, providing excellent FOM for balanced performance in hard switching applications. AONA66916 has a maximum RDS(on) rating of 3.4mOhms and has a 175°C junction temperature rating.

    “Cooling the power MOSFET in high power design can be challenging, and AOS has successfully addressed this essential issue with our advanced top exposed package design. It not only enables better thermal transfer from its top side exposed contact to heat sink due to large exposed surface area, our new package delivers a much cooler device that contributes to a more efficient and robust final design,” said Peter H. Wilson, Marketing Sr. Director of the MOSFET product line at AOS.

    AONA66916

    Original – Alpha and Omega Semiconductor

    Comments Off on Alpha and Omega Semiconductor Added a 100V MOSFET in DFN 5×6 Package