Cambridge GaN Devices (CGD) will exhibit at Electronica which runs from November 12-15, 2024 at the Messe München, Munich, Germany. This will be the second time that the company has exhibited at the world’s leading trade fair and conference for electronics, marking the company’s position as a leader in delivering gallium-nitride power ICs which are easy to use and very reliable.

ANDREA BRICCONI | CHIEF MARKETING OFFICER, CGD
“Since our first appearance at Electronica, CGD has made remarkable steps. We have introduced our P2 series ICeGaN® ICs that feature RDS(on) levels down to 25 mΩ, supporting multi kW power levels with the highest efficiency. We have announced a deal with TSMC, the leading IC fabrication house in the world which ensures quality and supply of our innovative power devices. Also, studies by leading academic research establishment, Virginia Tech University, have demonstrated that our ICeGaN GaN technology is more reliable and robust than other GaN platforms. GaN is now available for use at higher power levels, and at Electronica we are expecting to meet with designers who are eager to take advantage of the efficiency and power density benefits that GaN can bring to their latest designs.”

During the show, CGD will make two presentations:

  • November 12, 13:20 – 14:10, Booth A5.351: SiC & GaN Technologies – Exploring Advancements, Addressing Challenges CGD’s CTO and co-founder, Professor Florin Udrea will join a panel of GaN experts for a Panel Discussion moderated by Maurizio Di Paolo Emilio, Editor-in-Chief, Power Electronics News.
  • November 12, 16:10-16:35, Power Electronics Forum: ICeGaN as a smart high voltage platform for high power industrial and automotive applications presented by Professor Florin Udrea.

The power devices field has undergone significant change due to the emergence of Wide Band Gap semiconductors, particularly Gallium Nitride (GaN) and Silicon Carbide (SiC). Traditionally, GaN has been used for lower power consumer applications (e.g., power supplies), while SiC dominated the medium to high power markets, such as industrial (e.g., motor drives) and automotive applications (e.g., traction inverters).

SiC’s superior scaling of on-state resistance at high voltages gives it an edge above 1.2 kV, but GaN is now competing with SiC at 650V for all power levels. ICeGaN®, featuring sensing and protection functions, surpasses discrete SiC in terms of robustness and ease of paralleling, offering notable advantages for 650V high-power applications. Additionally, with the rise of multi-level topologies for traction inverters, GaN may challenge SiC’s 1.2 kV market. Ultimately, both technologies have a bright future, with overlap expected in high-power (10-500 kW) applications.

At Electronica, CGD will show a number of demos that employ ICeGaN, including:

  • 3 kW totem-pole PFC evaluation board;
  • High and low power QORVO motor drive evaluation kits developed in collaboration with CGD and utilising ICeGaN
  • Half-bridge and full-bridge evaluation boards, plus an ICeGaN in parallel evaluation board;
  • Single leg of a 3-phase 800 V automotive inverter demo board, developed in partnership with French public R&I institute, IFP Energies nouvelles (IFPEN);
  • ICeGaN vs discrete GaN circuits comparison in half bridge (daughter cards) demo board.
  • High-density USB-PD adaptor developed with Industrial Technology Research Institute (ITRI) of Taiwan

Original – Cambridge GaN Devices