-
LATEST NEWS / PROJECTS / SiC / WBG3 Min Read
ROHM and United Automotive Electronic Systems Co., Ltd., (UAES), a leading Tier 1 automotive supplier in China, have recently entered into a long-term supply agreement for SiC power devices.
Since 2015, ROHM and UAES have been collaborating and carrying out detailed technical exchanges on automotive applications utilizing SiC power devices. This partnership deepened in 2020 with the establishment of the joint SiC technology laboratory at the UAES headquarters in Shanghai, China. And in 2021 ROHM’s advanced SiC power devices and peripheral components were highly evaluated by UAES, resulting in ROHM being selected as a preferred supplier.
The close long-standing technical partnership has led to the production and adoption of numerous automotive products equipped with ROHM SiCs, such as onboard chargers and inverters for electric vehicles. SiC power devices play a crucial role in enhancing the efficiency and performance of a variety of systems, contributing to extending the cruising range and reducing battery size.
This long-term supply agreement ensures UAES sufficient access to SiC power devices to meet the growing demand for SiC-based inverter modules, which have been supplied to customers since November 2023. Going forward, both companies will deepen their collaboration, contributing to technological innovation in the automotive sector by accelerating the development of cutting-edge SiC power solutions for EVs.
- Guo Xiaolu, Deputy General Manager, United Automotive Electronic Systems Co., Ltd.
‘The growing popularity of electric vehicles in the Chinese market has made the adoption and integration of power semiconductors like SiC increasingly important. ROHM, a world-renowned semiconductor manufacturer, is a pioneer and market leader in SiC power devices. Since 2015 we have been actively engaged in technical exchanges and highly value ROHM’s proposed solutions encompassing devices and peripheral components. Choosing ROHM as our long-term supplier of SiC chips guarantees a stable supply for future mass production. We appreciate ROHM’s past efforts and look forward to building a long-term collaborative relationship, with this agreement serving as a new starting point.’
- Tsuguki Noma, Corporate Officer and Director of the Power Device Business Unit, ROHM
‘We are very pleased to have signed a long-term supply agreement with UAES, a valued partner with whom we have built a strong cooperative relationship over the years. As a leading Tier 1 manufacturer in China, UAES is at the forefront of advanced application development. To meet the need for SiC power devices that improve efficiency in the rapidly expanding electric vehicle market, ROHM has established a leading development and manufacturing system within the SiC industry. We believe that by working together, both companies can provide cutting-edge, high performance, high quality automotive applications. Moving forward, we will continue to drive technological innovation in electric vehicles together with UAES by offering power solutions centered on SiC.’
History of Technical Collaboration Between ROHM and UAES
- 2015 Initiated technical exchange
- 2020 Established a joint SiC technology laboratory
- 2020 Began mass production of automotive products equipped with ROHM SiC power devices
- 2021 ROHM recognized as a preferred supplier for SiC power solutions
- 2024 ROHM and UAES sign a long-term supply agreement for SiC power devices
Original – ROHM
-
Vanguard International Semiconductor Corporation and NXP Semiconductors N.V. announced that they have obtained all necessary approvals from relevant authorities and injected capital to officially establish the VisionPower Semiconductor Manufacturing Company Pte Ltd (VSMC) joint venture. The company will now proceed with the planned construction of VSMC’s first 300mm wafer manufacturing facility.
VIS and NXP announced on June 5 this year plans to establish the VSMC joint venture in Singapore to build a 300mm wafer fab with a total investment of approximately $7.8 billion.
“We express our gratitude to the governments and regulatory authorities of Taiwan, Singapore, and other countries for their strong support, which enabled us to obtain the necessary approvals and proceed with this significant investment as scheduled. VSMC’s first 300mm fab is a concrete manifestation of VIS’ commitment to meeting customer demands, expanding our manufacturing capacity, and diversifying our global manufacturing bases.”VIS Chairman Leuh Fang
“We thank all the relevant government agencies for moving with speed to support the VSMC joint venture project. The VSMC fab perfectly aligns with our hybrid manufacturing strategy and helps ensure we have a manufacturing base which delivers competitive cost, supply control and geographic resilience to support our long-term growth objectives.”NXP President and CEO Kurt Sievers
VSMC will begin construction on its initial phase of the wafer fab in the second half of this year, with initial production slated to begin in 2027. Upon the successful ramp of the initial phase, a second phase will be considered and developed pending commitments by VIS and NXP.
The 300mm fab will support 130nm to 40nm mixed-signal, power management and analog products, targeting the automotive, industrial, consumer and mobile end markets. The related technology license and technology transfer will be from TSMC, and a Technology License Agreement with TSMC has been signed.
With an expected output of 55,000 300mm wafers per month in 2029, the joint venture will create approximately 1,500 jobs while contributing to the development of the upstream and downstream supply chains, contributing to Singapore and the global semiconductor ecosystem.
Original – NXP Semiconductors
-
LATEST NEWS / PRODUCT & TECHNOLOGY2 Min Read
Littelfuse, Inc. announced the launch of the IX4341 and IX4342 dual 5 ampere low-side MOSFET gate drivers. These gate drivers are specifically designed for driving MOSFETs and complete the existing IX434x driver series by adding the remaining two logic input versions. The IX434x series now consists of dual non-inverting, dual inverting, and non-inverting and inverting input versions, providing customers with a comprehensive range of options.
The IX4341 and IX4342 drivers’ short propagation delay times of 16 nanoseconds and brief rise and fall times of 7 nanoseconds make them ideal for high-frequency applications. Additionally, for higher current requirements, electronics designers can parallel the two channels of the IX4340 and IX4341 devices to form a single 10 A driver, providing flexibility and scalability.
A notable feature of the IX434x drivers is their compatibility with TTL and CMOS logic inputs, enabling direct interfacing with most controllers. Furthermore, each output has an independent ENABLE function and under-voltage lockout circuitry (UVLO) to ensure reliable and safe operation. In case of eventual insufficient supply voltage, the gate driver output is asserted low, turning the external power device off.
The IX4341 and IX4342 dual 5 A low-side gate drivers find applications in various markets, including:
- general industrial and electrical equipment,
- appliances,
- building solutions,
- data centers,
- energy storage, and
- renewable energy.
These low-side MOSFET gate drivers are ideally suited for numerous industrial applications such as:
- switch-mode power supplies,
- DC-DC converters,
- motor controllers, and
- power converters.
The IX434x devices are available in standard 8-pin SOIC, thermally enhanced 8-pin SOIC, and 3×3 mm² MSOP packages, offering customers a range of options to suit their specific needs.
“This new series of dual five-ampere low-side gate drivers simplify circuit design with its high level of integration and compatibility with various logic input versions,” said June Zhang, Product Manager, Integrated Circuits Division, Semiconductor Business Unit, at Littelfuse. “With these drivers, customers can expect enhanced performance and protection for their power devices.”
The IX434x dual 5 A low-side gate drivers find applications in various industries, including general industrial and electrical equipment, appliances, building solutions, data centers, energy storage, and renewable energy.
They serve as a direct drop-in alternative to similar available drivers, providing customers with industry-standard options to meet their supply demands.
Original – Littelfuse
-
LATEST NEWS / PRODUCT & TECHNOLOGY / SiC / WBG2 Min Read
Navitas Semiconductor announced the release of a portfolio of third-generation automotive-qualified SiC MOSFETs in D2PAK-7L (TO-263-7) and TOLL (TO-Leadless) surface-mount (SMT) packages.
Navitas’ proprietary ‘trench-assisted planar’ technology provides world-leading performance over temperature and delivers high-speed, cool-running operation for electric vehicle (EV) charging, traction, and DC-DC conversion. With case temperatures up to 25°C lower than conventional devices, Gen-3 Fast SiC offers an operating life up to 3x longer than alternative SiC products, for high-stress EV environments.
Gen-3 Fast MOSFETs are optimized for the fastest switching speed, highest efficiency, and support increased power density in EV applications such as AC compressors, cabin heaters, DC-DC converters, and on-board chargers (OBCs). Navitas’ dedicated EV Design Center has demonstrated leading edge OBC system solutions up to 22 kW with 3.5 kW/liter power density, and over 95.5% efficiency.
400 V-rated EV battery architectures are served by the new 650 V Gen-3 Fast MOSFETs featuring RDS(ON) ratings from 20 to 55 mΩ. The 1,200 V ranges from 18 to 135 mΩ and is optimized for 800 V systems.
Both 650 and 1,200 V ranges are AEC Q101-qualified in the traditional SMT D2PAK-7L (TO-263-7) package. For 400 V EVs, the 650 V-rated, surface-mount TOLL package offers a 9% reduction in junction-to-case thermal resistance (RTH,J-C), 30% smaller PCB footprint, 50% lower height, and 60% smaller size than the D2PAK-7L. This enables very high-power density solutions, while minimal package inductance of only 2 nH ensures excellent fast-switching performance and lowest dynamic package losses.
The automotive-qualified 650 V and 1200 V G3F SiC MOSFET family in D2PAK-7L and TOLL surface mount packages are released and available immediately for purchase.
Original – Navitas Semiconductor
-
LATEST NEWS2 Min Read
Axcelis Technologies, Inc. will be a top-level Platinum Sponsor at the International Conference on Ion Implantation Technology 2024 (IIT 2024) taking place September 23-26 at the Toyama International Conference Center in Japan.
IIT 2024 is the 24th Conference in the biennial series focused on the major challenges in current and emerging technologies related to implant/doping and annealing processes, device applications, equipment, metrology and modeling.
At the event, Axcelis will host a company exhibit and the company’s technologists and collaborators will present on nine topics:
- Performance of an Aluminum Sputtering Source for High Current Doping in Power Devices
- Energetic and Surface Metals Characterization of Purion XEmax With and Without Boost™ Technology Using Vapor Phase Decomposition-Inductively Coupled Plasma Mass Spectrometry
- Radiation Characterization and Mitigation of High Energy H+ Beams
- Wear-Resistant Surface Coatings for Long Electrostatic Chuck Life and Stable Performance
- Self-contained Predictive System Diagnostic Sensors
- Comparison of Arsenic and Antimony Dopant Distribution Profiles of Very High Energy Implantations
- New Challenges and Opportunities in Wide Bandgap Materials with Ion Implantation and Annealing Co-Optimization
- Dual Cathode Ion Source for Axcelis’ High Energy Implanters
- Low Metals Ion Source
President and CEO of Axcelis Technologies Russell Low said, “We’re excited to be a Platinum Sponsor of IIT 2024, one of the most important technology forums in the ion implantation industry. We’re especially pleased to be participating at the event in Japan this year, which is a very important market for Axcelis. Axcelis recently opened several new Service Centers in Japan to support our expanding customer base. We remain focused on growing our global market share by providing customers the most innovative, enabling implant technology and support solutions to ensure their success.”
For more information on the event, or to register, visit the conference website at https://smartconf.jp/content/iit2024.
Original – Axcelis Technologies
-
MCC Semi rolled out three new 600V MOSFETs that go beyond high performance. Designed with an integrated fast recovery diode, these advanced components help solve the challenges engineers face when trying to maximize efficiency while minimizing power losses and heat generation.
Ideal for high-voltage applications, MSJWFR60N60, MCTK075N60FH, and MCTK105N60FH feature on-resistance in the sub-100mΩ range — with options as low as 30mΩ — to significantly reduce conduction losses and ensure efficient power delivery.
A low gate charge only adds to their excellence, especially in high-frequency applications where response times are critical. Available in a through-hole TO-247 package and space-saving SMD TOLL-8L options with a Kelvin source connection, these MOSFETs offer a versatile solution for enhancing overall system performance.
Improve reliability for various applications, such as power supplies, AC-DC converters, motor drives, and renewable energy systems, with these low RDS(on) semiconductors from MCC.
Features & Benefits:
- Superjunction MOSFET technology: Enhances efficiency and reduces power losses
- Low on-resistance: Minimizes conduction losses for improved performance
- Low conduction losses: Ensures greater efficiency in power applications
- Low gate charge: Facilitates faster switching and reduced energy consumption
- Integrated fast recovery diode: Provides rapid recovery for better switching performance
- High-speed switching: Supports high-frequency operations, perfect for modern applications
- Versatile packages: Enables design flexibility with through-hole (TO-247) and SMD with Kelvin Source (TOLL-8L-KS) options
Original – Micro Commercial Components
-
LATEST NEWS / PRODUCT & TECHNOLOGY / SiC / WBG2 Min Read
Power Master Semiconductor has released a new package portfolio, TO leadless (TOLL) package for 650V eSiC MOSFET series to meet the increasing demands for high power density and efficiency with superior switching performance in various applications such as AI data center servers, telecom infrastructure, flat panel display power, ESS, and battery formations.
Recently, the rapid growth of artificial intelligence (AI) is expected to drive continued strong data center demand. AI datacenters rely on GPUs that consume 10 to 15 times more power than traditional CPUs. SiC MOSFETs in TOLL package are an optimal solution for the rapidly expanding AI applications today.
The TOLL package has a footprint of 9.9mm x 11.7mm, reducing the PCB area by 30% compared to the D2PAK 7-lead package. Moreover, with a thickness of 2.3mm, it has 60% less height than the D2PAK 7-lead package.
The TOLL offers superior thermal performance and low package inductance (2nH) compared to D2PAK 7-lead package. Kelvin source configuration lowers gate noise and reduces turn-on loss by 60% compared to same device without Kelvin source configuration, enabling higher frequency operation and improved power density. The new PCT65N27M1 has a VDSS rating of 650 V with a typical RDS(ON) of 27mΩ and a maximum drain current (ID) of 84 A.
Power Master Semiconductor’s products in TOLL package has special grooves in the gate and source pins to enhance the performance of the solder joint and offers Moisture Sensitivity Level 1 (MSL 1).
Original – Power Master Semiconductor