• GlobalFoundries Awarded $35 Million from U.S. Government to Produce Next-Gen GaN Chips

    GlobalFoundries Awarded $35 Million from U.S. Government to Produce Next-Gen GaN Chips

    3 Min Read

    GlobalFoundries has been awarded $35 million in federal funding from the U.S. government to accelerate the manufacturing of GF’s differentiated gallium nitride (GaN) on silicon semiconductors at its facility in Essex Junction, Vermont. This funding brings GF closer to large-scale production of GaN chips, which are unique in their ability to handle high voltages and temperatures.

    These chips are positioned to enable game-changing performance and efficiency in 5G and 6G cellular communications for infrastructure and handsets, automotive and industrial Internet of things (IoT), as well as power grids and other critical infrastructure. 

    With the new $35 million in funding, awarded by the Department of Defense’s Trusted Access Program Office (TAPO), GF plans to purchase additional tools to expand development and prototyping capabilities, moving closer to at-scale 200mm GaN-on-silicon semiconductor manufacturing.

    As part of the investment, GF plans to implement new capabilities for reducing the exposure of GF and its customers to supply chain constraints of gallium, while improving the speed of development, assurance of supply and competitiveness of U.S-made GaN chips. 

    The funding builds on years of collaboration with the U.S. government – including $40 million in support from 2020-2022 – that leverages the talent of GF’s Vermont team and their 200mm semiconductor manufacturing experience, and applies it to GaN-on-silicon manufacturing. 200mm is state-of-the-art for GaN chip technology. 

    “Vermont is a leader in semiconductor innovation. This federal funding is welcome news, and will solidify our state’s position as a leader at the forefront of manufacturing next-generation chips,” said Senator Peter Welch. “It’s critical we support investment in this industry here in Vermont and in the U.S. – both for our local economic growth and for our national security. I look forward to continuing to fight for our domestic semiconductor and chip manufacturers in the Senate.” 

    “This strategic investment continues to strengthen our domestic ecosystem of critical dual-use commercial technologies, ensuring they’re readily available and secure for DoD utilization. In concert with key partners, we’re proactively shaping the future of our defense systems,” said The Honorable Christopher J. Lowman, Assistant Secretary of Defense for Sustainment. 

    “GaN on silicon is an ideal technology for high performance radio frequency, high voltage power switching and control applications for emerging markets, and it’s important for 6G wireless communications, industrial IoT, and electric vehicles,” said Dr. Thomas Caulfield, president and CEO of GF.

    “GF has a longstanding partnership with the U.S. government, and this funding is critical to move GaN on silicon chips closer to volume production. These chips will enable our customers to realize bold new designs that push the envelope of energy efficiency and performance of critical technologies we rely on every day.” 

    GF’s facility in Essex Junction, Vermont, near Burlington, was among the first major semiconductor manufacturing sites in the United States. Today around 1,800 GF employees work at the site. Built on GF’s differentiated technologies, these GF-made chips are used in smartphones, automobiles, and communications infrastructure applications around the world.

    The facility is a DMEA accredited Trusted Foundry and manufactures secure chips in partnership with the U.S. Department of Defense, for use in some of the nation’s most sensitive aerospace and defense systems. 

    Original – GlobalFoundries

    Comments Off on GlobalFoundries Awarded $35 Million from U.S. Government to Produce Next-Gen GaN Chips
  • Axcelis Ships Purion EXE Power Series Implanter to SiC Power Device Company in Japan

    Axcelis Ships Purion EXE Power Series Implanter to SiC Power Device Company in Japan

    1 Min Read

    Axcelis Technologies, Inc. announced the shipment of the Company’s Purion EXE SiC Power Series™ 200mm high energy implanter to a leading SiC power device chipmaker located in Japan. The system will be used in high volume production of SiC power devices for use in automotive applications.

    Executive Vice President of Marketing and Applications, Greg Redinbo, commented, “The power device market is one of the fastest growing segments in IC manufacturing, due in part to the robust growth in the electric vehicles market. The power device market is at a critical inflection point as chipmakers transition from 150mm to 200mm SiC wafers.

    The Purion Power Series family is uniquely suited to excel at these applications due to its innovative platform that offers the flexibility to handle multiple wafer sizes, various substrate types and operate at various implant temperatures. We look forward to continuing to expand the Purion platform footprint in Japan and supporting our customers’ goals to increase their manufacturing capacity.”

    Original – Axcelis Technologies

    Comments Off on Axcelis Ships Purion EXE Power Series Implanter to SiC Power Device Company in Japan
  • ROHM Delivers New 5-Model Lineup of 100V Dual MOSFETs

    ROHM Delivers New 5-Model Lineup of 100V Dual MOSFETs

    2 Min Read

    ROHM has developed dual MOSFETs that integrate two 100V chips in a single package – ideal for fan motor drive applied in communication base stations and industrial equipment. New five-models have been added as part of the HP8KEx/HT8KEx (Nch+Nch) and HP8MEx (Nch+Pch) series.

    Recent years have seen a transition to higher voltages from conventional 12V/24V to 48V systems in communication base stations and industrial equipment, – intending to achieve higher efficiency by reducing current values. In these situations, switching MOSFETs are required a withstand voltage of 100V to account for voltage fluctuations, as 48V power supplies are also used in the fan motors for cooling these applications.

    However, increasing the breakdown voltage raises ON resistance (RDS(on)) (which is in a trade-off relationship), leading to decreased efficiency, making it difficult to achieve both lower RDS(on) and higher breakdown voltage. Moreover, unlike multiple individual drive MOSFETs normally applied in fan motors - dual MOSFETs that integrate two chips in one package are increasingly being adopted to save space.

    In response, ROHM developed two new series – the HP8KEx/HT8KEx (Nch+Nch) and the HP8MEx (Nch+Pch) – that combine Nch and Pch MOSFET chips using the latest processes. Both series achieve the industry’s lowest RDS(on) by adopting new backside heat dissipation packages with excellent heat dissipation characteristics. As a result, RDS(on) is reduced by up to 56% compared with standard dual MOSFETs (19.6mΩ for the HSOP8 and 57.0mΩ for the HSMT8 Nch+Nch), contributing to significantly lower set power consumption.

    At the same time, combining two chips in a single package provides greater space savings by reducing area considerably. For example, replacing two single-chip TO-252 MOSFETs with one HSOP8 decreases footprint by 77%.

    Next, ROHM will continue to expand its dual MOSFET lineup to withstand voltages ideal for industrial equipment while also developing low-noise variants. This is expected to contribute to solving social issues such as environmental protection by saving space and reducing power consumption in various applications.

    Application Examples

    – Fan motors for communication base stations
    – Fan motors for factory automation, and other industrial equipment
    – Fan motors for data center servers, etc.

    Original – ROHM

    Comments Off on ROHM Delivers New 5-Model Lineup of 100V Dual MOSFETs
  • Micro Commercial Components Presents AEC-Q101 100V MOSFET for Enhanced Auto Performance

    Micro Commercial Components Launched AEC-Q101 100V MOSFET for Enhanced Auto Performance

    1 Min Read

    Micro Commercial Components introduced the latest auto-grade MOSFET in the TOLL package for today’s demanding e-mobility applications. AEC-Q101 qualified and ready to empower auto designs, MCC’s100V MCTL300N10YHE3 MOSFET delivers exceptional performance and unmatched reliability for a range of systems, including battery management systems, motor drives, and interior or exterior LED lighting. 

    Designed with split-gate trench (SGT) technology, this component features low on-resistance and high current density to maximize efficiency while handling power loads. It’s also a great replacement for traditional MOSFETs due to its enhanced performance.  The innovative TOLL-8 package provides design flexibility due to its compact footprint and optimal heat dissipation to ensure safe operation in high-temperature environments. 

    Fully RoHS compliant, MCTL300N10YHE3 is the ideal solution for automotive applications.

    Features & Benefits:

    • Exceptional performance and reliability
    • AEC-Q101 qualified
    • SGT technology for improved performance
    • Low on-resistance for enhanced efficiency
    • High current density capabilities
    • Low-profile TOLL package saves design space
    • Excellent heat dissipation for reliable operation in high temperatures
    • Halogen-free and lead-free finish for environmental friendliness and compliance with RoHS regulations

    Original – Micro Commercial Components

    Comments Off on Micro Commercial Components Launched AEC-Q101 100V MOSFET for Enhanced Auto Performance
  • Infineon Seals Multi-year Supply Agreement for SiC and Si Power Semiconductors with Hyundai and Kia

    Infineon Seals Multi-Year Supply Agreement for Si and SiC Power Semiconductors with Hyundai and Kia

    2 Min Read

    Infineon Technologies AG and Hyundai Motor Company and Kia Corporation have signed a multi-year supply agreement for silicon carbide (SiC) and silicon (Si) power semiconductors. Infineon will build and reserve manufacturing capacity to supply SiC as well as Si power modules and chips to Hyundai/Kia until 2030. Hyundai/Kia will support the capacity build-up and capacity reservation with financial contributions.

    “Infineon stands as a valued strategic partner, boasting steadfast production capabilities and distinct technological prowess within the power semiconductor market,” said Heung Soo Kim, Executive Vice President and Head of Global Strategy Office (GSO) at Hyundai Motor Group. “This partnership not only empowers Hyundai Motor and Kia to stabilize its semiconductor supply but also positions us to solidify our leadership in the global EV market, underpinned by our competitive product lineups.”

    “The future car will be clean, safe and smart and semiconductors are at the heart of this transformation. As a trusted partner, we are proud to advance our long-term partnership with Hyundai/Kia,” said Peter Schiefer, President of Infineon’s Automotive Division. “We contribute premium products of high quality, our system knowledge and application understanding combined with continued investments in manufacturing capacity to address the increasing demand for automotive power electronics.”

    Infineon’s power semiconductors are key enablers for the transition to electromobility. This transition will lead to strong market growth for power semiconductors, especially those based on wide bandgap materials like SiC.

    With the significant expansion of its Kulim fab, Infineon will build the world’s largest 200-millimeter SiC power fab and further strengthen its market-leading role as a high-quality, high-volume supplier to the automotive industry. In line with Infineon’s multi-site strategy, the Kulim facility will complement Infineon’s current manufacturing capacity in Villach, Austria, and further capacity expansions in Dresden, Germany.

    Original – Infineon Technologies

    Comments Off on Infineon Seals Multi-Year Supply Agreement for Si and SiC Power Semiconductors with Hyundai and Kia
  • IEC Published Power Semiconductors for an Energy-Wise Society White Paper 

    IEC Published “Power Semiconductors for an Energy-Wise Society” White Paper 

    2 Min Read

    Power semiconductors are electronic components which are key enablers to tackling major challenges of decarbonization and digitization on the path to an energy-wise society.

    This IEC White Paper establishes the critical role that power semiconductors play in various aspects of modern industry and in society – from renewable power generation and transmission, electromobility, automated factories, energy-efficient data centres to smart cities and smart homes. It covers the various expected trends, opportunities and challenges surrounding the power semiconductors industry. Significant challenges are mentioned such as the need for change in industry practices when transitioning from linear to circular economies, and shortage of skilled personnel required for power semiconductor development.

    The white paper stresses the need for strategic actions at the policy-making level to address these concerns and calls for stronger government commitment, policies, and funding to advance power semiconductor technologies and integration. It demands recognition of the crucial role played by power semiconductors in global decarbonization efforts.

    It further highlights the pivotal role of standards in removing significant technical risks, increasing product quality and enabling faster market acceptance. According to the authors, IEC can play a leading role in promoting collaboration among stakeholders, aligning methodologies, and ensuring that international and national standardization bodies work closely with industry. Additionally, the white paper delivers recommendations to IEC stakeholders for collaborative structures and accelerating the development and adoption of standards.

    In a first for the IEC Market Strategy Board’s White Paper series, the authors aim to inspire the engagement of young professionals in the area.

    This white paper has been prepared by a project team representing a variety of organizations, working under the IEC Market Strategy Board (MSB). The project team included representatives from semiconductor network businesses, academia, equipment vendors from around the world, and IEC Young Professionals. Dr Kazuhiko Tsutsumi, Mitsubishi Electric Corporation and MSB Chair, served as the project sponsor. Dr Munaf Rahimo and Dr Iulian Nistor of MTAL GmbH served as coordinating authors and project partner.

    Original – IEC

    Comments Off on IEC Published “Power Semiconductors for an Energy-Wise Society” White Paper 
  • J2 Semiconductor Plans to Establish Hong Kong's First Silicon Carbide Wafer Fab

    J2 Semiconductor Plans to Establish Hong Kong’s First Silicon Carbide Wafer Fab

    5 Min Read

    With support from the Innovation, Technology and Industry Bureau and the Office for Attracting Strategic Enterprises (OASES), the Hong Kong Science and Technology Parks Corporation (HKSTP) has signed a Memorandum of Understanding (MoU) with mainland China-based microelectronics enterprise J2 Semiconductor (Shanghai) Co. Ltd. (J2 Semiconductor), to set up a global research and development (R&D) Centre focusing on third-generation semiconductors at the Hong Kong Science Park, and to set up Hong Kong’s first Silicon Carbide (SiC) 8-inch advanced wafer fab.

    This is a milestone moment in the government’s ambition to establish Hong Kong as a leading microelectronics hub in the region. This further promotes new industrialisation, a core for the Innovation, Technology and Industry Bureau which published its “Hong Kong Innovation and Technology Development Blueprint”, with a mission to develop strategically advanced manufacturing industries, such as microelectronics and semiconductors. As one of the world’s largest import and export markets for semiconductors, Hong Kong is at the heart of the Greater Bay Area which offers huge potential in becoming a key hub in the global semiconductor supply and value chain.

    Professor Sun Dong, Secretary for Innovation, Technology and Industry, said “This collaboration between HKSTP and J2 Semiconductor to set up the Hong Kong’s first-ever large-scale semiconductor wafer fab, demonstrates the commitment of the HKSAR Government in taking the initiative to turn its ‘new industrialisation’ vision into action. J2 Semiconductor is proactively building up the capacity, quality and competitiveness of Hong Kong’s tech talent pool. The project will also drive the development of related industries, including semiconductor equipment manufacturers, material suppliers, testing service providers, to develop a complete ecosystem to reinforce Hong Kong’s position in the global semiconductor industry value chain.”

    The collaboration between HKSTP and J2 Semiconductor is jointly supported by the Innovation, Technology and Industry Bureau and OASES with a view to sustain Hong Kong’s innovation and technology ecosystem and promote new industrialisation. The MoU was witnessed by Professor Sun Dong, Secretary of Innovation, Technology and Industry Bureau, Mr Philip Yung, Director-General of OASES, Ms Lillian Cheong, Under Secretary for Innovation, Technology and Industry, Dr Sunny Chai, Chairman of HKSTP and Dr Robert Tsu, Chairman of JSemiconductor. While Mr Albert Wong, CEO of HKSTP and Mr TY Chu, Co-CEO of JSemiconductor formally signed the MoU.

    Dr Sunny Chai, Chairman of HKSTP said, “The plan of establishing JSemiconductor’s R&D Centre in the Science Park will promote Hong Kong’s R&D and advanced manufacturing capabilities of third-generation semiconductor devices. JSemiconductor brings the core technology and expertise to Hong Kong in advanced chip design, fabrication process and semiconductor product development, which is an important milestone in the development of microelectronics industry in Hong Kong. As one of Hong Kong’s flagship innovation and technology platforms, we provide high-quality infrastructure and facilities as well as a vast network of partners, which will continue to promote Hong Kong’s microelectronics R&D capabilities and strengthen Hong Kong’s position as an international I&T hub.”

    Dr Robert Tsu, Chairman of J2 Semiconductor said, “I am very grateful for the level of attention and support from both the Innovation, Technology and Industry Bureau and HKSTP to this project. The MoU signing officially launches our third-generation semiconductor ‘SiC 8-inch advanced wafer fab’ project.  J2 Semiconductor will invest an estimated HK$6.9 billion into the project, with plans to start volume production in the next couple of years, and reach annual production capacity of 240,000 SiC wafers in 2028, generating an annual production value of more than HK$11 billion and creating more than 700 job positions in Hong Kong.  The project will assist in the early completion of the localisation of the new energy vehicle supply chain and drive the long-term development and prosperity of the semiconductor industry in Hong Kong.”

    As a semiconductor chip design enterprise, J2 Semiconductor is committed to meeting the strong demand for domestically produced automotive chips from the China automotive industry. It mainly provides high-performance silicon carbide (SiC) devices with a focus on automotive, power conversion and communications. JSemiconductor’s superior SiC technology can be applied to relevant applications such as electric vehicles, as well as the related infrastructure such as charging stations, smart grids and energy storage.

    HKSTP is committed to promoting Hong Kong’s new industrialisation mission and building a world-leading microelectronics ecosystem. HKSTP has established an extensive network of microelectronics hardware infrastructure, including Sensor Packaging and Integration Laboratory (Sensor Lab), Heterogenous Integration Lab (HI Lab) and the Hardware Lab, which can support the end-to-end process of design, prototyping and pilot production of chip-related equipment and systems as well as products. The Microelectronics Centre in Yuen Long Innovation Park is set to begin operation in 2024, supporting HKSTP’s infrastructure to accelerate microelectronics R&D pilot production, creating opportunities for upstream and downstream enterprises in the industry chain.

    The microelectronics ecosystem of HKSTP is flourishing, with more than 200 microelectronics related companies. The establishment of the J2 Semiconductor facilities in Hong Kong will create greater level of synergy and knowledge exchange. Currently, five universities in Hong Kong are ranked among the top 100 universities in the world, with more than 100 university researchers engaged in microelectronics research, and promote the R&D of third-generation semiconductors. In this year’s Budget Speech, the HKSAR Government announced its plan to establish a Microelectronics Research and Development Institute to strengthen collaboration with universities, R&D centres and companies in the industry, and further accelerate the “1 to N” translation of R&D outcomes and bolster industry development.

    Original – HKSTP

    Comments Off on J2 Semiconductor Plans to Establish Hong Kong’s First Silicon Carbide Wafer Fab
  • ROHM Opened a New Production Building in Malaysia

    ROHM Opened a New Production Building in Malaysia

    2 Min Read

    ROHM-Wako Electronics (Malaysia) Sdn. Bhd. (RWEM) in Malaysia held an opening ceremony for its newly building constructed to strengthen its analog IC production capacity and manufacturing subsidiary.

    RWEM produces small-signal devices such as diodes and LEDs, and the new building will be used to produce isolated gate driver ICs, one of the focus products in analog ICs. Isolated gate driver ICs are ICs that optimally drive power semiconductors such as IGBTs and SiCs, and since they play an important role in energy saving and miniaturization of electric vehicles and industrial equipment, demand for these products is expected to grow.

    RWEM will begin production of ICs for the first time in order to strengthen its production capacity and promote multi-location of analog IC production factories from the viewpoint of BCM (Business Continuity Management).

    The new building will be equipped with a variety of energy-saving technologies to reduce environmental impact (expected to reduce CO2 emissions by about 15% compared to the current facilities). RWEM’s BCM system will be further strengthened by introducing various state-of-the-art disaster preventions. RWEM intends to bring in production machines and begin production in October, 2024. As a result, RWEM’s overall production capacity is expected to increase by approximately 1.5 times.

    ROHM Group will continue to strengthen its production capacity in accordance with its Medium-Term Management Plan while keeping abreast of market conditions, and will also thoroughly enhance its BCM system to ensure a stable supply of products to customers.

    Original – ROHM

    Comments Off on ROHM Opened a New Production Building in Malaysia
  • EPC Space Announces Grand Opening of Andover Facility

    EPC Space Announces Grand Opening of Andover Facility

    2 Min Read

    EPC Space announces the Grand Opening of their new facility in Andover, Massachusetts. Guests are invited to join the EPC Space team for a day of activities that will explore the possibilities that GaN presents to significantly outperform silicon-based devices and enable higher power densities, higher efficiencies, and more compact and lightweight circuitry for critical spaceborne missions.

    Radiation hardened (rad hard) GaN improves the performance of power supplies for satellites and space mission equipment, motor drives for robotics, instrumentation and reaction wheels, lidar for autonomous navigation and docking, and deep space probes.

    Event Highlights

    • Start the day with a warm welcome and enjoy a welcome reception. Guests will receive drink tickets for the upcoming Cocktail Reception and an automatic entry into an exciting raffle.
    • Get a glimpse into EPC Space’s remarkable journey and accomplishments as CEO, Bel Lazar, officially opens the event.
    • Witness the ceremonial opening of our new facility.
    • Explore our facility with guided tours. Immerse yourself in a product showcase and demonstrations, featuring a dedicated Applications table hosted by EPC Space engineers. They will be available to answer questions and demonstrate real-world applications such as DC-DC, POL, and motor control.
    • Book Signing by Dr. Alex Lidow (2:30 PM – 3:30 PM): Take this opportunity to meet with Dr. Alex Lidow, CEO of EPC, and author of “GaN Power Devices and Applications,” who will be available to sign copies.
    • Connect with EPC Space experts for personalized discussions and insights into rad hard GaN technology.
    • Enter for a chance to win exciting prizes during the raffle.
    • Network with fellow attendees and the EPC Space team during the Cocktail Reception.

    To attend send an RSVP by October 18, 2023 to info@epc.space

    “EPC Space is proud to be at the forefront of providing radiation hardened GaN solutions for power conversion to the aerospace industry and beyond,” said Bel Lazar, CEO of EPC Space. “We are happy to invite our customers and partners to be a part of this event and see first-hand  how our technology is shaping the future of high reliability applications”.

    Original – EPC Space

    Comments Off on EPC Space Announces Grand Opening of Andover Facility
  • Queensland Semiconductor Opens New Facility in Coolum Beach

    Queensland Semiconductor Opens New Facility in Coolum Beach

    1 Min Read

    Queensland Semiconductor Technology (Quest) announced opening of its new sales, marketing, assembly and test facility in Coolum Beach. Based very close to the Sunshine Coast airport Quest is now able to ship its power semiconductors to the Australia domestic market. With the airport located within 5 minutes international shipping is swift.

    Queensland Semiconductor Technology Pty Ltd stands as a beacon in the semiconductor industry, having established its foundation in Queensland. Quest offers high voltage switching SiC SBD technology that is paramount for transformative applications like electric vehicles, wind farms, and solar power generation. Additionally, product portfolio expands to SiC Mosfets, IGBTs, TCIGBTs & super junction Gan technology plus.

    Original – Queensland Semiconductor Technology

    Comments Off on Queensland Semiconductor Opens New Facility in Coolum Beach