Explaining the physics and characteristics of power semiconductor devices, this book presents an overview of various classes of power semiconductors. It provides insight into how they work and the characteristics of the various components from the viewpoint of the user, going through all modern power semiconductor device types. The physics are explained in reasonable detail, providing the precise amount of information needed to fully understand the component's behavior in the application. Exploring the specific strengths and weaknesses of each device type, the book demonstrates how these devices fit into the system and how they will behave there.
Designing and building power semiconductor modules requires a broad, interdisciplinary base of knowledge and experience, ranging from semiconductor materials and technologies, thermal management, and soldering to environmental constraints, inspection techniques, and statistical process control. This diversity poses a significant challenge to engineers, and a book that brings together the essential elements of these technologies is long overdue. Power Electronic Modules: Design and Manufacture fills that void.
Recent advances in robotics, automatic control and power conditioning systems have prompted research into increasingly sophisticated power semiconductor devices. This cutting-edge text explores the design, physical processes and applications performance of current power semiconductor devices. The extensive scope covers the complete range of discrete and integrated devices now available.