• EPC Space Announces Grand Opening of Andover Facility

    EPC Space Announces Grand Opening of Andover Facility

    2 Min Read

    EPC Space announces the Grand Opening of their new facility in Andover, Massachusetts. Guests are invited to join the EPC Space team for a day of activities that will explore the possibilities that GaN presents to significantly outperform silicon-based devices and enable higher power densities, higher efficiencies, and more compact and lightweight circuitry for critical spaceborne missions.

    Radiation hardened (rad hard) GaN improves the performance of power supplies for satellites and space mission equipment, motor drives for robotics, instrumentation and reaction wheels, lidar for autonomous navigation and docking, and deep space probes.

    Event Highlights

    • Start the day with a warm welcome and enjoy a welcome reception. Guests will receive drink tickets for the upcoming Cocktail Reception and an automatic entry into an exciting raffle.
    • Get a glimpse into EPC Space’s remarkable journey and accomplishments as CEO, Bel Lazar, officially opens the event.
    • Witness the ceremonial opening of our new facility.
    • Explore our facility with guided tours. Immerse yourself in a product showcase and demonstrations, featuring a dedicated Applications table hosted by EPC Space engineers. They will be available to answer questions and demonstrate real-world applications such as DC-DC, POL, and motor control.
    • Book Signing by Dr. Alex Lidow (2:30 PM – 3:30 PM): Take this opportunity to meet with Dr. Alex Lidow, CEO of EPC, and author of “GaN Power Devices and Applications,” who will be available to sign copies.
    • Connect with EPC Space experts for personalized discussions and insights into rad hard GaN technology.
    • Enter for a chance to win exciting prizes during the raffle.
    • Network with fellow attendees and the EPC Space team during the Cocktail Reception.

    To attend send an RSVP by October 18, 2023 to info@epc.space

    “EPC Space is proud to be at the forefront of providing radiation hardened GaN solutions for power conversion to the aerospace industry and beyond,” said Bel Lazar, CEO of EPC Space. “We are happy to invite our customers and partners to be a part of this event and see first-hand  how our technology is shaping the future of high reliability applications”.

    Original – EPC Space

    Comments Off on EPC Space Announces Grand Opening of Andover Facility
  • JCET Pioneering Automotive HiRel SiC Device Packaging

    JCET Pioneering Automotive HiRel SiC Device Packaging

    3 Min Read

    With decades of expertise in power device packaging and testing, JCET Group offers a comprehensive power product portfolio encompassing IGBT, SiC, GaN, and more. In the field of high-density power solutions for automotive applications, JCET’s unique power module technology positions us at the forefront of power main drive solutions.

    JCET’s innovative packaging technology for high power density Silicon Carbide (SiC) power modules minimizes parasitic effects and thermal resistance, while our groundbreaking interconnect technology ensures high reliability. Reduced power loss and improved performance, making JCET the preferred choice for high-reliability SiC device packaging for the automotive industry.

    The rapid growth of the power semiconductor market in automotive applications is being driven by the acceleration of vehicle electrification. In this evolving landscape, a multitude of power devices find applications in crucial automotive systems such as motor control, DC-DC conversion, air conditioning drives, on-board chargers (OBC), and battery management for electrical vehicles.

    According to research by Strategy Analytics, the value of power devices in battery electric vehicles (BEVs) is nearly five times that in traditional fuel vehicles. This is where SiC devices come into play, offering several advantages. SiC devices feature smaller conductor resistors per unit area, higher voltage capabilities, faster switching speeds, and the ability to operate at high temperatures. These characteristics are instrumental in enhancing the power density of the inverter, ultimately leading to improved operational efficiency and extended mileage for electric vehicles under real-world conditions.

    JCET combines low stray inductance package technology, advanced interconnect packaging technology, and cutting-edge thermal management solutions, tailoring our packaging processes to meet individual customer requirements. Within this package, a suite of integrated solutions, including the whole-silver sintering process, copper wire bonding, and single-side direct water cooling, is employed.

    Furthermore, SiC devices, with their smaller footprint, increased power density, and higher breakdown voltage compared to conventional silicon-based power devices, are at the core of our packaging. When integrated into an 800V platform, SiC devices deliver substantial system advantages, enabling rapid charging and extended mileage. JCET’s unwavering commitment to optimizing packaging technology is evident in our High-Performance Device (HPD) package, which is continuously fine-tuned to excel in SiC high-frequency switching applications.

    With the growing adoption of SiC devices across diverse sectors like automotive controllers, charging stations, and photovoltaic energy storage, JCET has pioneered innovative designs encompassing packaging materials, internal connections, and packaging structures. JCET has introduced a range of packaging solutions tailored to meet various user requirements, including:

    • 400V platform, A0/A00 vehicles within 70KW: Si Hybrid Package1 solution;
    • 400V platform, Class A vehicles between 100-200KW: Si/SiC Hybrid Package Driver solution;
    • 800V platform, Class B and luxury cars with 200KW and above: SiC single/double sided heat dissipation solution.

    Automotive power devices, including SiC, hold vast market potential and exhibit a high level of technical innovation certainty. This presents a compelling opportunity for device designers and manufacturers. Looking ahead, JCET remains committed to its core mission of advancing power device packaging solutions, We are dedicated to expanding our technology offerings, ensuring our customers have a diverse array of options, helping them integrate more efficient and reliable technologies into the new energy vehicle systems.

    Original – JCET

    Comments Off on JCET Pioneering Automotive HiRel SiC Device Packaging
  • Transphorm Introduced 3 SuperGaN® FETs in TOLL Packages

    Transphorm Introduced 3 SuperGaN® FETs in TOLL Packages

    3 Min Read

    Transphorm, Inc. introduced three SuperGaN® FETs in TOLL packages with on-resistances of 35, 50, and 72 milliohms. Transphorm’s TOLL package configuration is industry standard, meaning the SuperGaN TOLL FETs can be used as drop-in replacements for any e-mode TOLL solution.

    The new devices also offer Transphorm’s proven high voltage dynamic (switching) on-resistance reliability that is generally lacking in leading foundry-based e-mode GaN offerings. To sample the devices, visit Transphorm’s product page: https://www.transphormusa.com/en/products/.

    The three surface mount devices (SMDs) support higher power applications operating within an average range of 1 to 3 kilowatts. These power systems are typically found in high performance segments such as computing (AI, server, telecom, data center), energy and industrial (PV inverters, servo motors), and other broad industrial markets which, collectively, have a current global GaN TAM of $2.5B. Notably, the FETs are optimal solutions for today’s rapidly expanding AI systems that rely on GPUs requiring 10 to 15 times the power of traditional CPUs.

    Transphorm’s high power GaN devices are already widely supplied to leading customers who use them to power in-production high performance systems including datacenter power supplies, high power gaming PSUs, UPSes, and microinverters. These applications can also be supported by the TOLL devices as can electric-vehicle-based DC-to-DC converters and onboard chargers, with the underlying SuperGaN die already automotive (AEC-Q101) qualified.

    The SuperGaN TOLL FETs represent the sixth package type offered by Transphorm, giving customers the widest selection of packages to meet their unique design requirements. As with all Transphorm products, the TOLL devices harness the inherent performance and reliability advantages made possible by the normally-off d-mode SuperGaN platform.

    For a detailed competitive analysis between SuperGaN and e-mode GaN, download the company’s latest white paper titled The Fundamental Advantages of d-Mode GaN in Cascode Configuration. The white paper’s conclusion aligns with a head-to-head comparison released earlier this year showing the 72 milliohm SuperGaN FETs outperforming larger 50 milliohm e-mode devices in a commercially available 280 W gaming laptop charger.

    SuperGaN devices lead the market with unmatched:

    • Reliability at < 0.03 FIT
    • Gate safety margin at ± 20 V
    • Noise immunity at 4 V
    • Temperature coefficient of resistance (TCR) at 20% lower than e-mode
    • Drive flexibility with standard drivers and protection circuits readily available in silicon-based controllers/drivers

    Device Specifications
    The robust 650 V SuperGaN TOLL devices are JEDEC qualified. Because the normally-off d-mode platform pairs the GaN HEMT with a low voltage silicon MOSFET, the SuperGaN FETs are easy to drive with commonly used off-the-shelf gate drivers. They can be used in various hard- and soft-switching AC-to-DC, DC-to-DC, and DC-to-AC topologies to increase power density while reducing system size, weight, and overall cost.

    PartDimensions (mm)RDS(on) (mΩ) typRDS(on) (mΩ) maxVth (V) typId (25°C) (A) max
    TP65H035G4QS10 x 123541446.5
    TP65H050G4QS10 x 125060434
    TP65H070G4QS10 x 127285429

    Original – Transphorm

    Comments Off on Transphorm Introduced 3 SuperGaN® FETs in TOLL Packages
  • AFRY Assists SweGaN to Build Semiconductor Fab in Europe

    AFRY Assists SweGaN to Build Semiconductor Fab in Europe

    2 Min Read

    Supplier of semiconductor epiwafers, SweGaN, recently began the transformation from start-up to scale-up. AFRY is assisting SweGaN’s scale-up journey with a wide variety of services to build a new state-of-the-art production facility in Linköping. A rapidly growing global sector, semiconductors – are key component within electric vehicles, solar inverters, power supplies and more – all contributing towards a more sustainable society.

    AFRY’s cyber security experts are guiding SweGan in securing its IP (Immaterial Properties) and trade secrets and ensuring customer integrity. Additionally, AFRY is providing a bouquet of expert professional services including IT, OT, ERP, CE marking, construction of the new production facility, server room construction, electrical, security, work environment, quality assurance, risk management and project management.

    “Initially, we asked AFRY to support and secure our cyber security operations. After understanding AFRY’s wide range of competencies and services, we determined it would be highly favourable to bring all professional services for the new facility under one roof. Partnering with AFRY, we can now focus SweGaN resources on our growth and expansion goals,” says Henrik Tölander, COO SweGaN.

    “I am very proud that SweGaN chose us for this project. The client saw the value of one supplier for all their professional service needs. As SweGaN’s full service provider, we can gain a comprehensive, holistic overview of their needs and offer a customer-tailored solution,” says Michael Blom, Section Manager at AFRY.

    The opening of the semiconductor production facility will enable Sweden, and in extension Europe, to strengthen the European supply chain and compete against Taiwan, China, the U.S, South Korea and Japan – currently the main providers of semiconductors. Increased access to robust semiconductor offerings in Europe will make it easier to develop and produce electric vehicles, solar inverters, and power supplies in Europe, while also reducing dependency on competing countries.

    Original – AFRY

    Comments Off on AFRY Assists SweGaN to Build Semiconductor Fab in Europe
  • Solitron Devices Acquired Micro Engineering

    Solitron Devices Acquired Micro Engineering

    2 Min Read

    Solitron Devices has acquired Micro Engineering Inc. located in Apopka, FL. Specializing in highly integrated, high reliability assemblies, Micro Engineering has over forty years of experience servicing medical, industrial, and aerospace applications.

    Focused on low to mid volume production, Micro Engineering offers services from conceptual design and prototyping to full turnkey manufacturing and functionally tested assemblies. Additional services include hand assembly, wire harnessing, specialized coatings and full box builds.

    Mark Matson, Solitron President & COO, said, “Micro Engineering is an exceptionally synergistic fit with Solitron, expanding and complimenting engineering and manufacturing capabilities. Solitron’s expertise with chip and wire, silicon carbide and high-density multi-chip modules combined with Micro Engineering’s PCBA, SMT and system level box build capability offers a strong suite of technology to customers. 

    This new capability for increased functionality and power density will accelerate introductions into emerging markets particularly utilizing Silicon Carbide (SiC) and Gallium Nitride (GaN). The combination of Solitron and Micro Engineering will also broaden both companies’ presence in medical, high end industrial and aerospace applications.”

    Combined manufacturing capabilities now include 3D CAD modelling, 3D Printing, CAE machining, aluminum & gold wire bonding, void free soldering, fine pitch SMT for BGA’s, rigid, flex and double-sided circuit card assemblies; right up through full box builds. Product qualification infrastructure includes thermal shock, vibration, mechanical shock, centrifuge, salt spray atmosphere, burn-in and more.  Micro engineering is ISO-9001 registered.

    Original – Solitron Devices

    Comments Off on Solitron Devices Acquired Micro Engineering
  • GaN Systems Shares Key Takeaways from SEMICON Taiwan 2023

    GaN Systems Shares Key Takeaways from SEMICON Taiwan 2023

    3 Min Read

    SEMICON Taiwan 2023 once again underscored Taiwan’s strategic importance in the global semiconductor industry. Entering its 28th year, the event was held in Taipei, gathering 950 exhibitors with 3,000 booths and attracting more than 62,000 visitors. The sheer scale of participation was evident in the hour-long traffic queues and bustling metro platforms as people flocked into the Exhibition Halls.

    Innovations and sustainability were the focal points of this year’s show. Distinguished figures from the industry took the stage to emphasize the resilience of the semiconductor supply chain and envision a greener and more intelligent future enabled by semiconductors. Fueled by tremendous opportunities in artificial intelligence, communications, and automotive electronics, the semiconductor industry is poised to expand to a trillion-dollar market by the close of this decade despite the short-term cyclical downturns.

    Reshaping Mobility with Power Semiconductors

    This year, energy efficiency came to the forefront of innovations, especially among applications that have far-reaching impacts on the global economy, with electric vehicles being one.

    Electrification and autonomous trends continue to drive up the semiconductor content per vehicle. Wide bandgap semiconductors like SiC and GaN have emerged as pivotal players, making substantial contributions to the performance and efficiency of next-generation electric vehicles.

    It was exciting to see industry key players illustrate significant improvements achieved by new-generation semiconductors in terms of power efficiency, power density, and connectivity. Research firms estimate that silicon-based semiconductors will grow at a CAGR of 4% from 2022 to 2028, while SiC will grow at 31% and GaN at 49%, highlighting the growth potential of wide bandgap semiconductors.

    More Data, More Computing Power, More Energy Consumption

    The rapid adoption of artificial intelligence applications in every aspect of our lives presents a significant opportunity for the semiconductor industry. The recent breakthroughs in artificial intelligence, like generative AI, are made possible by the progress of semiconductor technologies, which were on full display at this year’s expo.

    The computing power and the memory access required for AI applications are still growing at an unprecedented pace, and the energy consumption is proportional to the computing capability. More efficient energy conversion and distribution solutions are critical for data centers to accommodate increasing energy-intensive workloads.

    Key takeaways Summary

    • SEMICON Taiwan once again turned out to be an enlightening event, fostering the exchange of experiences and the dissemination of ingenious ideas.
    • Energy efficiency challenges overall system performance as electronic devices become versatile and highly integrated. GaN power semiconductors are a low-cost and reliable solution to tackle power challenges for power-hungry applications.
    • Technology advancement hinges on two significant investments: innovation and talent. We’re pleased to note these were repeatedly addressed in keynotes and presentations at this year’s event.

    Original – GaN Systems

    Comments Off on GaN Systems Shares Key Takeaways from SEMICON Taiwan 2023
  • GaN Systems Introduced 4th Generation GaN Power Platform

    GaN Systems Introduced 4th Generation GaN Power Platform

    2 Min Read

    GaN Systems announced the introduction of its groundbreaking 4th generation GaN power platform. This state-of-the-art technology sets a new power efficiency and compactness standard, delivering an impressive step-function performance boost and industry-leading figures of merit. For example, with GaN Systems Gen4 in an artificial intelligence (AI) server rack, 3.2kW power supplies at 100W/in3 in 2022 are now achieving 120W/in3 with efficiencies above Titanium levels. Gen4 will revolutionize power markets, including consumer electronics, data centers, solar energy, industrial applications, and automotive.

    The Gen4 platform also delivers more total bill of material cost savings compared to traditional Silicon and Silicon Carbide solutions, making GaN Systems’ technology a powerful choice for businesses seeking to enhance their competitive advantage.

    “Our lead customers have already realized the benefits of our Gen4 platform,” stated Jim Witham, CEO of GaN Systems. “This platform is a testament to our ongoing commitment to continuously delivering superior performance advantages and next-generation levels of efficiency. GaN Systems, in strategic collaboration with industry leaders like TSMC, has invested significantly to meet the ever-evolving demands of our customers. We are pioneering a transformation in product offerings, packaging innovations, enriched functionalities, and unparalleled performance across our markets.”

    A Huge Leap for Power Electronics Technology

    The Gen4 power platform boasts the following benefits:

    • >20% improvement in input and output figures-of-merit translates into reduced losses, enhanced efficiency, and more cost-effective solutions.
    • Increased granularity in device specification, combined with a wide range of packaging options, including PDFN, TOLL, TOLT, and Embedded – allowing the correct Rds resistance and package combination for each application, consequently optimizing electrical and thermal system performance.
    • 700V E-mode with the industry’s highest transient voltage rating, 850V, significantly enhancing total system reliability and robustness. This rating enables the semiconductor components to withstand user environment anomalies, such as voltage spikes, ensuring uninterrupted and dependable performance.
    • On-state resistance ranges enable power systems from 20W to 25,000W.

    For more information, visit https://gansystems.com/gan-transistors/gen-4/

    Original – GaN Systems

    Comments Off on GaN Systems Introduced 4th Generation GaN Power Platform
  • Indian Institute of Science Developed a Fully Indigenous GaN Power Switch

    Indian Institute of Science Developed a Fully Indigenous GaN Power Switch

    3 Min Read

    Researchers at the Indian Institute of Science (IISc) have developed a fully indigenous gallium nitride (GaN) power switch that can have potential applications in systems like power converters for electric vehicles and laptops, as well as in wireless communications. The entire process of building the switch – from material growth to device fabrication to packaging – was developed in-house at the Centre for Nano Science and Engineering (CeNSE), IISc.

    Due to their high performance and efficiency, GaN transistors are poised to replace traditional silicon-based transistors as the building blocks in many electronic devices, such as ultrafast chargers for electric vehicles, phones and laptops, as well as space and military applications such as radar.

    “It is a very promising and disruptive technology,” says Digbijoy Nath, Associate Professor at CeNSE and corresponding author of the study published in Microelectronic Engineering. “But the material and devices are heavily import-restricted … We don’t have gallium nitride wafer production capability at commercial scale in India yet.” The know-how of manufacturing these devices is also a heavily-guarded secret with few studies published on the details of the processes involved, he adds.

    Power switches are used to control the flow of power to – essentially turn on or off – electronic devices. To design the GaN power switch, the IISc team used a metal organic chemical vapour deposition technique developed and optimised over a decade by researchers in the lab of Srinivasan Raghavan, Professor and Chair, CeNSE. It involves growing GaN alloy crystals layer by layer on a two-inch silicon wafer to fabricate a multi-layered transistor.

    The entire process needs to be carried out carefully in a clean room to ensure that no defects arise due to environmental conditions like humidity or temperature, which can affect device performance. The team also took the help of Kaushik Basu, Associate Professor in the Department of Electrical Engineering (EE), and his lab, to build an electrical circuit using these transistors and test their switching performance.

    GaN transistors typically operate in what is called a “depletion mode” – they are on all the time unless a negative voltage is applied to turn them off. But power switches used in chargers and adapters need to work the other way around – they normally need to be off and not carrying current, and should only turn on when a positive voltage is applied (“enhancement mode”). To achieve this operation, the team combined the GaN transistor with a commercially available silicon transistor to keep the device normally off.

    “The packaging of the device was also indigenously developed,” explains Rijo Baby, PhD student at CeNSE and first author of the study. After packaging and testing, the team found the device performance to be comparable to state-of-the-art switches available commercially, with a switching time of about 50 nanoseconds between on and off operations.

    Going forward, the researchers plan on scaling up the device dimensions so that it can operate at high currents. They also plan to design a power converter that can step up or step down voltages.

    “If you look at strategic organisations in India, they have a hard time procuring GaN transistors … It is impossible to import them beyond a certain quantity or power/frequency rating,” says Nath. “This is essentially a demonstration of indigenous GaN technology development.”

    Original – Indian Institute of Science (IISc)

    Comments Off on Indian Institute of Science Developed a Fully Indigenous GaN Power Switch
  • Innoscience Technology Shipped over 300 million InnoGan Chips

    Innoscience Technology Shipped over 300 million InnoGan Chips

    5 Min Read

    Innoscience Technology has shipped more than 300 million pieces of its InnoGan gallium nitride chips as of August 2023, helping customers achieve small size, high energy efficiency, and low loss product design. 

    This is in response to phenomenal market demand across multiple sectors multiple applications in the consumer category – fast charging, mobile phones, LEDs –  as well as automotive LIDAR, data centres, and renewable energy and energy storage systems, which has seen analysts such as TrendForce’s in its 2023 GaN Power Semiconductor Market Analysis Report, state that “the global GaN power device market will grow from US$180 million in 2022 to US$1.33 billion in 2026, with compound growth rate of 65%”.

    In November 2017, Innoscience began the world’s first 8-inch GaN-on-Si mass production line, adopting the Integrated Device Manufacturer (IDM) whole industry chain model, and launched its first low-voltage GaN power device in May 2018. By June 2019, Innoscience’s 650V high-voltage GaN device had passed JEDEC approval, and subsequently, Innoscience has been the only semiconductor company in the world that simultaneously mass-produces high-voltage and low-voltage GaN.

    Market acceptance of Innoscience’s high quality, high performance GaN devices has been swift. Following its 2019 entry into the fast charging market, Innoscience’s 650V parts have been adopted in 30W-120W designs by leading brands including ASUS, Anker, Nubia, Baseus, Greenlink, and Flash. 

     In 2020, Innoscience’s 100V low-voltage GaN was successfully used by Hesai in mass-production LIDAR designs, allowing lasers to achieve image transmission in a shorter time. 

    In March 2021, the Tencent×Nubia Red Magic mobile phone 6Pro was released. It comes equipped as standard with industry’s first 120W Black Rubik’s Cube GaN fast charge, which is based on Innoscience’s 650V chip. With the successive adoption by Oppo, Vivo, Lenovo and other manufacturers, it has become an industry trend for mobile phones to be equipped with GaN fast charging as standard. 

    March 2021 saw the mass-production of Innoscience’s bi-directional conduction chip V-GaN officially begin; this device is the only GaN chip in the world that can be applied to high-voltage side load switches, smartphone USB/wireless charging ports with built-in OVP protection, multi-power supply system switch circuits, and other scenarios:one V-GaN replaces two Si MOSFETs in load switching applications resulting in a smaller and more efficient solution.

    In October of the same year, Innoscience scored another industry first, as OPPO used the company’s self-developed bi-directional conduction VGaN IC as the internal power switch in its latest smart phone. Other mobile phone makers such as Realme, OnePlus, Lenovo, and Motorola have also successively adopted VGaN for charging protection. 

    In May 2022, Shounuo released the world’s smallest 45W/65W PD car charger, using Innoscience’s 40V low-voltage INN040FQ043A. 

    Then in July, Anker and Innoscience jointly released the world’s first 65W full-GaN fast charger. This design uses GaN power chips at both the AC and DC ends for the first time, taking system power density and efficiency to a whole new level. 

    Later, in October 2022, Innoscience achieved mass production of GaN products targeting industrial power supplies – again an industry first – comprehensively improving energy conversion efficiency and reducing system energy consumption.

    In November 2022, Innoscience’s INN100W032A won the IIC World Electronics Achievement Award. The gate charge of this product is only 20% of a traditional silicon MOSFET, and its Ciss is only 40% of its silicon counterpart. It can be widely applied in motor drive, Class D, data centre, motor-driver, communication base station and other product fields. In January 2023, Innoscience launched the SolidGaN ISG3201, a 100V highly-integrated half-bridge drive packaged solution, further improving the overall system performance of 48V power supply of data centre module power supplies, motor drives, class D power amplifiers, photovoltaic inverters and light hybrid electric vehicles. 

    The move to GaN as the premium power semiconductor technology is driven both by new GaN products and market demands. As an example, in April this year, Innoscience’s IATF 16949 automotive-grade low-voltage parts successfully expanded from industrial to automotive applications, with use in autonomous vehicle LIDAR systems.

    Then in July 2023, Innoscience began to apply GaN in the field of renewable energy, reducing the size and improving the efficiency of photovoltaic modules.

    By the end of August 2023, Innoscience had successfully mass-produced 54 different types of high-voltage GaN chips (650V-700V) and 20 types of medium-low voltage GaN chips (30V-150V). Products span three chip categories: wafers, discrete devices and integrated solutions.

    Commented Dr Denis Marcon, Innoscience’s General Manager, Europe: “We are just at the start of the GaN story. The first applications were all in consumer, but GaN is undoubtedly the key to reducing costs and increasing efficiency in the industrial field as well. And according to automotive industry forecasts, GaN may enter automotive market already this year penetrating applications such as low-power OBC and DC-DC applications in 2025. 

    With such rapid growth in market demand, the reliability of devices, price competitiveness and stable supply in large quantities are now the major concerns of users. Based on an advanced Innoscience’s 8-inch GaN-on-Si IDM manufacturing platform, Innoscience’s current production capacity has reached 15,000 wafers per month, providing tremendous advantages in scale, reliability and cost.”

    Original – Innoscience Technology

    Comments Off on Innoscience Technology Shipped over 300 million InnoGan Chips
  • IQE Collaborates with VisIC Technologies

    IQE Collaborates with VisIC Technologies

    2 Min Read

    IQE plc, the leading supplier of compound semiconductor wafer products and advanced material solutions to the global semiconductor industry, announced a strategic collaboration with VisIC Technologies, a global leader in the provision of GaN (Gallium Nitride) power solutions to the automotive sector, to develop the highest reliability gallium nitride D-Mode (D-Mode GaN) power products for use in electric vehicles inverters.

    IQE and VisIC Technologies will collaborate to develop 200mm (8”) D-Mode GaN power epiwafers that will be developed at IQE’s UK facilities, leveraging IQE’s well-established expertise in GaN technology.

    VisIC Technologies, with its ground-breaking D3GaN technology (Direct Drive D-Mode GaN), brings the future of EV inverters into focus. This technology promises to reduce power consumption, increase reliability and enhance performance in electric vehicles. By combining VisIC Technologies’ innovative Power Electronics solutions with IQE’s epitaxy excellence, this partnership aims to accelerate the adoption of GaN-on-Silicon technology in EVs, significantly contributing to the evolution of sustainable transportation.

    The collaboration marks another important milestone in IQE’s strategy of diversification into the high-growth Power market, first announced at its 2022 Capital Markets Day. IQE sees significant opportunities in the GaN Power epiwafer market in particular, which is forecast to reach a $632m value by 2027.

    Original – VisIC Technologies

    Comments Off on IQE Collaborates with VisIC Technologies