• STMicroelectronics’ GaN Driver Integrates Galvanic Isolation for Superior Safety and Reliability

    STMicroelectronics’ GaN Driver Integrates Galvanic Isolation for Superior Safety and Reliability

    2 Min Read

    STMicroelectronics’ first galvanically isolated gate driver for gallium-nitride (GaN) transistors, the STGAP2GS, trims dimensions and bill-of-materials costs in applications that demand superior wide-bandgap efficiency with robust safety and electrical protection.

    The single-channel driver can be connected to a high-voltage rail up to 1200V, or 1700V with the STGAP2GSN narrow-body version, and provides gate-driving voltage up to 15V. Capable of sinking and sourcing up to 3A gate current to the connected GaN transistor, the driver ensures tightly controlled switching transitions up to high operating frequencies.

    With minimal propagation delay across the isolation barrier, at just 45ns, the STGAP2GS ensures fast dynamic response. In addition, dV/dt transient immunity of ±100V/ns over the full temperature range guards against unwanted transistor gate change. The STGAP2GS is available with separate sink and source pins for easy tuning of the gate-driving operation and performance.

    Saving the need for discrete components to provide optical isolation, the STGAP2GS driver eases the adoption of efficient and robust GaN technology in various consumer and industrial applications. These include power supplies in computer servers, factory-automation equipment, motor drivers, solar and wind power systems, home appliances, domestic fans, and wireless chargers.

    In addition to integrating galvanic isolation, the driver also features built-in system protection including thermal shutdown and under-voltage lockout (UVLO) optimized for GaN technology, to ensure reliability and ruggedness.

    Two demonstration boards, the EVSTGAP2GS and EVSTGAP2GSN, combine the standard STGAP2GS and narrow STGAP2GSN with ST’s SGT120R65AL 75mΩ, 650V enhancement-Mode GaN transistors to help users evaluate the drivers’ capabilities.

    The STGAP2GS in SO-8 widebody package, and the STGAP2GSN SO-8 narrow version, are available now, priced from $1.42 for orders of 1000 pieces.

    Please visit www.st.com/stgap2gs for more information.

    Original – STMicroelectronics

    Comments Off on STMicroelectronics’ GaN Driver Integrates Galvanic Isolation for Superior Safety and Reliability
  • Navitas Confirms Continued Supply of Leading-Edge Gallium Nitride Power ICs

    Navitas Confirms Continued Supply of Leading-Edge Gallium Nitride Power ICs

    1 Min Read

    Navitas Semiconductor has confirmed continued supply of leading-edge gallium nitride (GaN) power ICs. On July 3rd, 2023, China’s Ministry of Commerce announced it would put in place certain restrictions on the exporting of gallium and germanium, among other materials, starting in August. Navitas’ wafer technology is ‘GaN-on-Si’. The wafer subcontract manufacturer has verified that their production remains unaffected by the export restrictions, given multiple sources of gallium world-wide.

    As a result, Navitas does not expect customer deliveries to be impacted or its business to be adversely affected by the export restrictions.

    Significant sources of gallium are available worldwide, as it is a natural by-product in the production of other metals such as aluminum. Navitas does not use germanium in any product.

    Original – Navitas Semiconductor

    Comments Off on Navitas Confirms Continued Supply of Leading-Edge Gallium Nitride Power ICs
  • Kulicke and Soffa Industries, Inc. announced the launch of several new systems and capabilities serving high-volume semiconductor and fast-growing power-semiconductor applications.

    Kulicke & Soffa Expands Core Market Leadership

    2 Min Read

    Kulicke and Soffa Industries, Inc. announced the launch of several new systems and capabilities serving high-volume semiconductor and fast-growing power-semiconductor applications.

    POWERCOMM™ and POWERNEXX™ represent the next evolution in advanced wire bonding systems and are designed with a new generation of intuitive advanced process capabilities which deliver maximum levels of performance, efficiency, and productivity. Additionally, both systems deliver enhanced mean time between assists (MTBA), with automated recovery features that improve the machine to operator ratio and better support localization of semiconductor assembly.

    The POWERCOMM™ advanced wire bonding solution is designed to support high-volume discrete and low-pin count devices commonly used in applications such as data centers, automotive, industrial automation, smartphones, wearables and connected devices.

    The POWERNEXX™ advanced wire bonding solution is optimized for higher density QFN packages with widths of up to 100mm. The improved illumination design on POWERNEXX™ allows faster alignment time through its Pattern Recognition System (PRS). Faster alignment and advanced process capabilities deliver the industry leading UPH and lowest Cost-of-Ownership. 

    In addition to the new POWERCOMM™ and POWERNEXX™ systems, K&S extends its leadership in wedge bond applications with new High-Power-Interconnect (HPI) capabilities addressing the emerging needs of power devices. HPI capabilities are becoming increasingly necessary to assemble applications such as inverters, battery assembly and charging infrastructure which support the growth and increasing efficiency requirements of sustainable energy and electric vehicle applications. The need for more efficient and higher-current applications are driving rapid changes to the power semiconductor market by increasing demand in emerging compound semiconductors, such as Silicon Carbide (SiC) and Gallium Nitride (GaN), but are also demanding new capabilities to support next-generation battery assembly and are accelerating the transition from aluminum wire and ribbon, to copper wire and ribbon. Next generation HPI capabilities are being introduced across Kulicke & Soffa’s leading wedge bonder portfolio today.

    “Our rich history of innovation and ongoing development priorities are enabling us to provide additional value to the increasingly critical assembly process. This recent set of new wire bonding systems and capabilities will better enable customers to optimize productivity, improve material handling capabilities and significantly lower cost-of-ownership,” said Shawn Sarbacker, Kulicke and Soffa’s Vice President of Ball Bonder Business Unit.

    Original – Kulicke and Soffa Industries

    Comments Off on Kulicke & Soffa Expands Core Market Leadership
  • Nidec and Renesas Collaborate on Semiconductor Solutions for Next-Generation E-Axle for EVs

    Nidec and Renesas Collaborate on Semiconductor Solutions for Next-Generation E-Axle for EVs

    2 Min Read

    Nidec Corporation and Renesas Electronics Corporation have agreed to join forces on the development of semiconductor solutions for a next-generation E-Axle (X-in-1 system) that integrates an EV drive motor and power electronics for electric vehicles (EVs).

    Today’s EVs are increasingly adopting the 3-in-1 unit called E-Axle, which integrates a motor, inverter, and gearbox (reduction gear). To realize high-performance and efficiency as well as smaller size, light weight and lower cost, and to accelerate vehicle development, EVs are also integrating power electronics controls such as DC-DC converters and on-board chargers (OBCs). EV manufacturers in advanced markets such as China have developed an X-in-1 platform that integrates multiple functions, accelerating the adoption in many vehicle models.

    As X-in-1 integrates multiple functions and increases in complexity, maintaining a high-level of quality in vehicles becomes challenging. Thus, developing preventive safety technologies such as diagnostic functions and failure prediction is crucial for ensuring safety and security in vehicles. To address this challenge, the two companies agreed to combine Nidec’s motor technology and Renesas’ semiconductor technology to jointly develop a highly reliable and high-performance proof of concept (PoC) for the X-in-1 system. The PoC is designed to support the industry’s highest performance and efficiency as well as smaller size, light weight and lower cost for the X-in-1 system.

    The companies plan to launch the first PoC by the end of 2023, which will feature a 6-in-1 system with a DC-DC converter, OBC, and power distribution unit (PDU) as well as a motor, inverter, and gearbox. As a second phase in 2024, Nidec and Renesas plan to develop a highly integrated X-in-1 PoC that incorporates a battery management system (BMS) along with other components. The first PoC will include power devices based on SiC (silicon carbide), and the second PoC will replace the DC-DC and OBC power devices with GaN (gallium nitride), offering excellent performance in high-frequency operation, to further reduce size and cost.

    Building on the PoC developed through this collaboration, Nidec plans to rapidly productize E-Axle systems to add to its portfolio and ramp up to mass production to lead the E-Axle market. Renesas plans to develop and deliver turnkey solutions for increasingly complex X-in-1 systems by expanding the jointly developed PoC for E-Axle reference designs.

    Original – Renesas Electronics

    Comments Off on Nidec and Renesas Collaborate on Semiconductor Solutions for Next-Generation E-Axle for EVs
  • New Innovation Center to Provide AIXTRON with Expanded Capacities for R&D

    New Innovation Center to Provide AIXTRON with Expanded Capacities for R&D

    2 Min Read

    AIXTRON SE plans to invest up to 100 million euros at its Herzogenrath site. A new innovation center is to be built, which will provide the manufacturer of deposition equipment to the semiconductor industry with enhanced capacities for research and development. AIXTRON received approval for the new project from the company’s Supervisory Board.

    The new innovation center will provide 1000m2 of cleanroom space and will be built on the company’s premises in Herzogenrath, Germany. The new building will create further capacities for the next product generations which are already in preparation, as well as for further product developments beyond that.

    “With our products, we address the megatrends of digitalization, electromobility and energy efficiency and are experiencing a strong and steadily growing demand. Technical innovations and product developments that precisely address the needs of our customers are the key to our success. And our dynamic environment offers us further growth opportunities,” says Dr. Felix Grawert, CEO of AIXTRON SE. “We are therefore very pleased that the Supervisory Board has approved this project which will enable us to create the foundation for further product developments and for future growth.”

    The importance of product development in the dynamic semiconductor industry is demonstrated by the success of AIXTRON’s new “G10” system generations. In the first year after market introduction, AIXTRON expects to generate more than 40 percent of its annual revenues with this new product generation. Right after its official launch, the new tool for the silicon carbide material system (G10-SiC) has already generated a high order intake. And it is expected to continue to drive further growth all throughout 2023 and beyond.

    Also, the new AIXTRON solution for the gallium-arsenide/indium-phosphite material system (G10-AsP) which was launched at the beginning of 2023 already enjoys a strong demand. For the first time, it enables the high-volume production of Micro LEDs and photonic components such as lasers on wafers with a diameter of up to 200mm. Later in the year, the new G10 system for gallium nitride (GaN) will also be launched. The material systems SiC and GaN have the potential to fully cover the complete range of power electronics, from electromobility to renewable energy technologies to fast data transmission. With their outstanding material properties, they will ensure a significant reduction in global CO2 emissions in these areas and help electromobility achieve a breakthrough.

    Original – AIXTRON

    Comments Off on New Innovation Center to Provide AIXTRON with Expanded Capacities for R&D
  • Simulation Model of Industry’s First 1200 V GaN-on-Sapphire Device Released by Transphorm

    Simulation Model of Industry’s First 1200 V GaN-on-Sapphire Device Released by Transphorm

    2 Min Read

    Transphorm, Inc. announced availability of its 1200 V FET simulation model and preliminary datasheet. The TP120H070WS FET is the only 1200 V GaN-on-Sapphire power semiconductor introduced to date, making its model the first of its kind. Its release indicates Transphorm’s ability to support future automotive power systems as well as three-phase power systems typically used in the broad industrial, datacom, and renewables markets. These applications will benefit from the 1200 V GaN device’s higher power density and reliability along with equal or better performance at more reasonable cost points versus alternative technologies.

    Transphorm recently validated the GaN device’s higher performance ability in a 5 kW 900 V buck converter switching at 100 kHz. The 1200 V GaN device achieved 98.7% efficiency, exceeding that of a similarly rated production SiC MOSFET.

    The innovative 1200 V technology also underscores Transphorm’s leadership in GaN power conversion. Vertical integration, epitaxy ownership, and patented process paired with decades of engineering expertise enable the company to bring to market the highest performing GaN device portfolio with four additional major differentiators: Manufacturability, Drivability, Designability, and Reliability.

    Transphorm’s 1200 V technology is anchored in proven process and mature technology, satisfying customer confidence requirements. The GaN-on-Sapphire process is in volume production today in the LED market. Additionally, the 1200 V technology leverages the fundamentally superior, normally-off GaN platform used in Transphorm’s current device portfolio.

    Key TP120H070WS device specifications include:

    • 70 mΩ RDS(on)
    • Normally off
    • Efficient bidirectional current flow
    • ± 20 Vmax gate robustness
    • Low 4Vth gate drive noise immunity
    • Zero QRR
    • 3-lead TO-247 package

    The Verilog-A device model is recommended for use with the SIMetrix Pro v8.5 Circuit Simulator. A LTSpice model is in development and will be released in Q4 2023. Simulation modeling allows for fast and efficient power system design validation while reducing design iterations, development time, and hardware investments.

    The device model files and datasheet are available for download here: https://www.transphormusa.com/en/products/#models

    1200 V FET samples are expected to be available by Q1 2024.

    Original – Transphorm

    Comments Off on Simulation Model of Industry’s First 1200 V GaN-on-Sapphire Device Released by Transphorm
  • PowerUP Expo Returns in June

    PowerUP Expo Returns in June

    2 Min Read

    Power electronics technologies have undergone a radical transformation following the introduction of wide-bandgap (WBG) devices, such as silicon carbide (SiC) and gallium nitride (GaN). These materials, in fact, have characteristics that make them particularly suitable for applications that operate at high voltages and high switching frequencies. To fully exploit the potential offered by wide-bandgap semiconductors, designers must understand the challenges of these materials.

    Power electronics design will continue to focus on reducing the size and complexity of devices while increasing their functionality. The design will increasingly incorporate AI and machine learning algorithms to improve performance, monitor system health, and optimize energy management. Future developments will be integrated not only in automotive, industrial, aerospace markets, but also with IoT technologies to create a more connected and automated energy system.

    Semiconductor devices are used to drive motors and control power. As efficiency standards for these applications get better, cost-effective and energy-efficient control solutions, test and measurement solutions, and transducers/sensors make design easier and offer a high level of integration, as well as better safety features and certified isolation capabilities.

    Moreover, using energy harvesting techniques and new power semiconductors to make electrical and electronic systems work as well as possible is an important part of engineering.

    The PowerUP Expo is a three-day virtual conference and exhibition focusing on power electronics. With an exhibition area, live stage, and messaging center, the PowerUP Expo functions similarly to a live exhibition and conference. This technical conference will include a number of sessions including keynotes, panel discussions, technical presentations, and tutorials on a variety of subject matters, including significant technical trends, market demands, and new application areas. The exhibition area will include virtual booths from top power electronics businesses and a Live Chat facility that allows attendees to communicate with booth staff directly.

    PowerUP offers an opportunity for engineers, managers, academics, and students from all over the world to learn the latest technological advances and applications in Power Electronics and to connect with each other in our community. The newest trends and advancements in the field of power electronics, from components to intelligent systems, are discussed by leaders in the industry.

    Conference Tracks:

    • June 27: Tutorial/Lectures, Panel Discussion & Conference Preview
    • June 28: Wide Bandgap Semiconductors and Power Applications
    • June 29: Power Conversion and Management Design Trends in low and high power

    Detailed agenda can be found at PowerUP Expo.

    Original – PowerUP Expo

    Comments Off on PowerUP Expo Returns in June
  • ROHM Establishes Ultra-High-Speed Control IC Technology that Maximizes the Performance of GaN Devices

    ROHM Establishes Ultra-High-Speed Control IC Technology that Maximizes the Performance of GaN Devices

    2 Min Read

    While the adoption of GaN devices has expanded in recent years due to their superior high-speed switching characteristics, the speed of Control ICs, which are responsible for directing the driving of these devices, has become challenging.

    In response, ROHM has further evolved its ultra-high-speed pulse control technology Nano Pulse Control™. It is cultivated for power supply ICs, succeeding in significantly improving the control pulse width from the conventional 9ns to an industry-best 2ns. Leveraging this technology allowed ROHM to establish its ultra-high-speed Control IC technology that maximizes the performance of GaN devices.

    When pursuing miniaturization of the power supply circuit, it is necessary to reduce the size of the peripheral components through high-speed switching. Achieving this requires a Control IC that can take advantage of the drive performance of high-speed switching devices such as GaN devices.

    To propose solutions that include peripheral components, ROHM established ultra-high-speed Control IC technology optimized for GaN devices utilizing proprietary analog power supply technology Nano Pulse Control™.

    ROHM is currently working to commercialize Control ICs utilizing this technology, with plans to start sample shipment of 100V 1ch DC-DC Control IC in the second half of 2023. Using in conjunction with ROHM GaN devices (EcoGaN™ series) is expected to result in significant energy savings and miniaturization in a variety of applications, including base stations, data centers, FA (Factory Automation) equipment, and drones.

    Going forward, ROHM will continue to develop products that solve social issues by pursuing greater ease-of-use in applications centered on its strengths in analog technology.

    Original – ROHM

    Comments Off on ROHM Establishes Ultra-High-Speed Control IC Technology that Maximizes the Performance of GaN Devices