• New Innovation Center to Provide AIXTRON with Expanded Capacities for R&D

    New Innovation Center to Provide AIXTRON with Expanded Capacities for R&D

    2 Min Read

    AIXTRON SE plans to invest up to 100 million euros at its Herzogenrath site. A new innovation center is to be built, which will provide the manufacturer of deposition equipment to the semiconductor industry with enhanced capacities for research and development. AIXTRON received approval for the new project from the company’s Supervisory Board.

    The new innovation center will provide 1000m2 of cleanroom space and will be built on the company’s premises in Herzogenrath, Germany. The new building will create further capacities for the next product generations which are already in preparation, as well as for further product developments beyond that.

    “With our products, we address the megatrends of digitalization, electromobility and energy efficiency and are experiencing a strong and steadily growing demand. Technical innovations and product developments that precisely address the needs of our customers are the key to our success. And our dynamic environment offers us further growth opportunities,” says Dr. Felix Grawert, CEO of AIXTRON SE. “We are therefore very pleased that the Supervisory Board has approved this project which will enable us to create the foundation for further product developments and for future growth.”

    The importance of product development in the dynamic semiconductor industry is demonstrated by the success of AIXTRON’s new “G10” system generations. In the first year after market introduction, AIXTRON expects to generate more than 40 percent of its annual revenues with this new product generation. Right after its official launch, the new tool for the silicon carbide material system (G10-SiC) has already generated a high order intake. And it is expected to continue to drive further growth all throughout 2023 and beyond.

    Also, the new AIXTRON solution for the gallium-arsenide/indium-phosphite material system (G10-AsP) which was launched at the beginning of 2023 already enjoys a strong demand. For the first time, it enables the high-volume production of Micro LEDs and photonic components such as lasers on wafers with a diameter of up to 200mm. Later in the year, the new G10 system for gallium nitride (GaN) will also be launched. The material systems SiC and GaN have the potential to fully cover the complete range of power electronics, from electromobility to renewable energy technologies to fast data transmission. With their outstanding material properties, they will ensure a significant reduction in global CO2 emissions in these areas and help electromobility achieve a breakthrough.

    Original – AIXTRON

    Comments Off on New Innovation Center to Provide AIXTRON with Expanded Capacities for R&D
  • Simulation Model of Industry’s First 1200 V GaN-on-Sapphire Device Released by Transphorm

    Simulation Model of Industry’s First 1200 V GaN-on-Sapphire Device Released by Transphorm

    2 Min Read

    Transphorm, Inc. announced availability of its 1200 V FET simulation model and preliminary datasheet. The TP120H070WS FET is the only 1200 V GaN-on-Sapphire power semiconductor introduced to date, making its model the first of its kind. Its release indicates Transphorm’s ability to support future automotive power systems as well as three-phase power systems typically used in the broad industrial, datacom, and renewables markets. These applications will benefit from the 1200 V GaN device’s higher power density and reliability along with equal or better performance at more reasonable cost points versus alternative technologies.

    Transphorm recently validated the GaN device’s higher performance ability in a 5 kW 900 V buck converter switching at 100 kHz. The 1200 V GaN device achieved 98.7% efficiency, exceeding that of a similarly rated production SiC MOSFET.

    The innovative 1200 V technology also underscores Transphorm’s leadership in GaN power conversion. Vertical integration, epitaxy ownership, and patented process paired with decades of engineering expertise enable the company to bring to market the highest performing GaN device portfolio with four additional major differentiators: Manufacturability, Drivability, Designability, and Reliability.

    Transphorm’s 1200 V technology is anchored in proven process and mature technology, satisfying customer confidence requirements. The GaN-on-Sapphire process is in volume production today in the LED market. Additionally, the 1200 V technology leverages the fundamentally superior, normally-off GaN platform used in Transphorm’s current device portfolio.

    Key TP120H070WS device specifications include:

    • 70 mΩ RDS(on)
    • Normally off
    • Efficient bidirectional current flow
    • ± 20 Vmax gate robustness
    • Low 4Vth gate drive noise immunity
    • Zero QRR
    • 3-lead TO-247 package

    The Verilog-A device model is recommended for use with the SIMetrix Pro v8.5 Circuit Simulator. A LTSpice model is in development and will be released in Q4 2023. Simulation modeling allows for fast and efficient power system design validation while reducing design iterations, development time, and hardware investments.

    The device model files and datasheet are available for download here: https://www.transphormusa.com/en/products/#models

    1200 V FET samples are expected to be available by Q1 2024.

    Original – Transphorm

    Comments Off on Simulation Model of Industry’s First 1200 V GaN-on-Sapphire Device Released by Transphorm
  • PowerUP Expo Returns in June

    PowerUP Expo Returns in June

    2 Min Read

    Power electronics technologies have undergone a radical transformation following the introduction of wide-bandgap (WBG) devices, such as silicon carbide (SiC) and gallium nitride (GaN). These materials, in fact, have characteristics that make them particularly suitable for applications that operate at high voltages and high switching frequencies. To fully exploit the potential offered by wide-bandgap semiconductors, designers must understand the challenges of these materials.

    Power electronics design will continue to focus on reducing the size and complexity of devices while increasing their functionality. The design will increasingly incorporate AI and machine learning algorithms to improve performance, monitor system health, and optimize energy management. Future developments will be integrated not only in automotive, industrial, aerospace markets, but also with IoT technologies to create a more connected and automated energy system.

    Semiconductor devices are used to drive motors and control power. As efficiency standards for these applications get better, cost-effective and energy-efficient control solutions, test and measurement solutions, and transducers/sensors make design easier and offer a high level of integration, as well as better safety features and certified isolation capabilities.

    Moreover, using energy harvesting techniques and new power semiconductors to make electrical and electronic systems work as well as possible is an important part of engineering.

    The PowerUP Expo is a three-day virtual conference and exhibition focusing on power electronics. With an exhibition area, live stage, and messaging center, the PowerUP Expo functions similarly to a live exhibition and conference. This technical conference will include a number of sessions including keynotes, panel discussions, technical presentations, and tutorials on a variety of subject matters, including significant technical trends, market demands, and new application areas. The exhibition area will include virtual booths from top power electronics businesses and a Live Chat facility that allows attendees to communicate with booth staff directly.

    PowerUP offers an opportunity for engineers, managers, academics, and students from all over the world to learn the latest technological advances and applications in Power Electronics and to connect with each other in our community. The newest trends and advancements in the field of power electronics, from components to intelligent systems, are discussed by leaders in the industry.

    Conference Tracks:

    • June 27: Tutorial/Lectures, Panel Discussion & Conference Preview
    • June 28: Wide Bandgap Semiconductors and Power Applications
    • June 29: Power Conversion and Management Design Trends in low and high power

    Detailed agenda can be found at PowerUP Expo.

    Original – PowerUP Expo

    Comments Off on PowerUP Expo Returns in June
  • ROHM Establishes Ultra-High-Speed Control IC Technology that Maximizes the Performance of GaN Devices

    ROHM Establishes Ultra-High-Speed Control IC Technology that Maximizes the Performance of GaN Devices

    2 Min Read

    While the adoption of GaN devices has expanded in recent years due to their superior high-speed switching characteristics, the speed of Control ICs, which are responsible for directing the driving of these devices, has become challenging.

    In response, ROHM has further evolved its ultra-high-speed pulse control technology Nano Pulse Control™. It is cultivated for power supply ICs, succeeding in significantly improving the control pulse width from the conventional 9ns to an industry-best 2ns. Leveraging this technology allowed ROHM to establish its ultra-high-speed Control IC technology that maximizes the performance of GaN devices.

    When pursuing miniaturization of the power supply circuit, it is necessary to reduce the size of the peripheral components through high-speed switching. Achieving this requires a Control IC that can take advantage of the drive performance of high-speed switching devices such as GaN devices.

    To propose solutions that include peripheral components, ROHM established ultra-high-speed Control IC technology optimized for GaN devices utilizing proprietary analog power supply technology Nano Pulse Control™.

    ROHM is currently working to commercialize Control ICs utilizing this technology, with plans to start sample shipment of 100V 1ch DC-DC Control IC in the second half of 2023. Using in conjunction with ROHM GaN devices (EcoGaN™ series) is expected to result in significant energy savings and miniaturization in a variety of applications, including base stations, data centers, FA (Factory Automation) equipment, and drones.

    Going forward, ROHM will continue to develop products that solve social issues by pursuing greater ease-of-use in applications centered on its strengths in analog technology.

    Original – ROHM

    Comments Off on ROHM Establishes Ultra-High-Speed Control IC Technology that Maximizes the Performance of GaN Devices