• Shin-Etsu Chemical Created a 300-mm QST Substrate

    Shin-Etsu Chemical Created a 300-mm QST Substrate

    2 Min Read

    Shin-Etsu Chemical Co., Ltd. has created a 300-mm (12-inch) QSTTM substrate, which is a substrate dedicated to GaN epitaxial growth, and recently started supplying samples.

    Shin-Etsu Chemical has sold 150-mm (6-inch) and 200-mm (8-inch) QSTTM substrates and GaN on QSTTM epitaxial substrates of each diameter. Meanwhile, the company worked on further increasing the diameter in response to strong customer demand and successfully developed a 300-mm (12-inch) QSTTM substrate. GaN device manufacturers cannot benefit from increasing the diameter of materials because of the lack in large-diameter substrate suitable for GaN growth, despite the fact that they can use the existing Si production line for GaN.

    This 300-mm QSTTM substrate enables GaN epitaxial growth without warping or cracks, which was unattainable on Si substrates, thus significantly reducing device costs. In addition to the enhancement of facilities for 150-mm and 200-mm QSTTM substrates already in progress, Shin-Etsu Chemical will work on mass-producing 300-mm QSTTM substrates.

    Since QSTTM substrates have the same coefficient of thermal expansion as that of GaN, it is possible to constrain warping and cracks of GaN epitaxial layer on QSTTM substrate of the SEMI standard thickness. This substrate material allows for high-quality and thick GaN epitaxial growth with a large diameter. Leveraging this feature, many customers are evaluating QSTTM substrates and GaN on QSTTM epitaxial substrates for power devices, high-frequency devices, and LEDs. Despite the challenging business environment, customers have entered the development phase toward practical to address the recently increasing interest in power devices, including power supplies for data centers.

    The addition of the 300-mm QSTTM substrate to the lineup of the 150-mm and 200-mm can significantly accelerate the spread of GaN devices. Shin-Etsu Chemical is committed to contribute to the realization of a sustainable society where energy can be used efficiently through the social implementation of GaN devices.

    Original – Shin-Etsu Chemical

    Comments Off on Shin-Etsu Chemical Created a 300-mm QST Substrate
  • EPC to Showcase Advanced GaN Power Solutions at PCIM Asia 2024

    EPC to Showcase Advanced GaN Power Solutions at PCIM Asia 2024

    3 Min Read

    EPC will participate in PCIM Asia 2024. The event will take place from August 28-30 in Shenzhen, China. Attendees are invited to visit EPC at Hall 11, Stand F01 to explore the industry’s most comprehensive portfolio of GaN power conversion solutions.

    See How GaN is Powering the Future

    GaN power semiconductors are used in fast-charging applications for consumer electronics, aerospace and defense applications, satellites, high density AI servers, drones, robots, autonomous vehicles, telecommunications equipment and medical electronics, among other innovative technologies.

    • AI servers, critical for processing vast amounts of data in real-time, require power-efficient and high-speed electronics that GaN technology can deliver.
    • Humanoid robotics require lightweight, compact, and highly responsive components. GaN enables more agile and intelligent robots that can perform complex tasks with greater precision.
    • The shift toward electric vehicles (EVs) and advanced driver-assistance systems (ADAS) requires power solutions that are not only highly efficient but also capable of handling the increased power demands. GaN’s superior efficiency, compactness, and thermal performance make it the ideal choice for powering the future of transportation.

    EPC is uniquely positioned to support these markets with its pioneering GaN technology. EPC’s innovative solutions not only offer superior performance but also drive advancements in these critical sectors, enabling businesses to realize their full potential in a rapidly evolving technological landscape.

    Visit EPC at PCIM Asia to discover how EPC’s GaN technology can power your next breakthrough—stop by the booth to explore our latest innovations and speak with our experts.

    Explore Booth (Hall 11, Stand F01)

    At the EPC booth, visitors will experience firsthand how GaN FETs and ICs enable higher efficiency, smaller size and weight, and lower costs in applications such as DC-DC converters for high power density AI servers, motor drives for eMobility, robotics, and drones, and more.

    • Use the Interactive Wall of GaN to select the ideal GaN FET or IC for your application
    • Connect with EPC’s team of experts to gain insight into the ‘GaN First Time Right™ Design Process. Attendees will gain valuable knowledge and tools to enhance their projects and drive efficiency to new levels.
    • Meet the Robots: “Chip”, the robot dog, and his robotic friends demonstrate GaN-based DC-DC, lidar, and motor drive solutions for advanced robotics.

    Schedule a Meeting: Learn from GaN Experts and discover strategies to optimize your power systems. To schedule a meeting during PCIM Asia contact renee.yawger@epc-co.com

    Conference Sessions: Attend technical sessions to gain insights from industry leaders into the latest trends and advancements in GaN power conversion technology.

    • The Future of Untethered Robotics: GaN-Powered Solutions for Mobility, AI, and Machine Vision
      Presenter: Alex Lidow, Ph.D.
    • Comprehensive Board Level Temperature Cycling Lifetime Projection of WLCSP GaN Power Devices
      Presenter: Shengke Zhang, Ph.D.
    • Comparison of Board-side and Back-side Thermal Management Techniques for eGAN® FETs in a Half-Bridge Configuration
      Presenter: Adolfo Herrera, Ph.D.
    • Validating Duty Cycle-Based Repetitive Gate and Drain Transient Overvoltage Specifications for GaN HEMTsHost: Bodo’s Power Systems
      Presenter: Shengke Zhang, Ph.D.

    “We are thrilled to participate in PCIM Asia and showcase our cutting-edge GaN technology”, said Nick Cataldo, VP of Sales and Marketing at EPC. “We look forward to demonstrating how our solutions are transforming industries by enabling higher efficiency, smaller size, and lower costs.”

    Original – Efficient Power Conversion

    Comments Off on EPC to Showcase Advanced GaN Power Solutions at PCIM Asia 2024
  • SweGaN Secures Multiple Frame Agreements for QuanFINE® GaN-on-SiC Epitaxial Wafers

    SweGaN Secures Multiple Frame Agreements for QuanFINE® GaN-on-SiC Epitaxial Wafers

    2 Min Read

    SweGaN AB, a European semiconductor manufacturer that develops and produces custom engineered Gallium Nitride on Silicon Carbide (GaN-on-SiC) epitaxial wafers, reported orders for its benchmark QuanFINE® epiwafers worth 17 MSEK in the first half of 2024, including three large frame agreements from undisclosed major Telecom and Defense market players. The company reported a 100% YoY order increase and began deliveries from its new facility in Linköping, Sweden, marking significant progress in its scale-up journey.

    In additional notable news, the semiconductor manufacturer announces a newly completed QuanFINE epiwafer customer qualification with a device manufacturer.

    In the last two years, SweGaN has displayed an exciting operational transformation in alignment with its growth strategy and global demands for GaN-on-SiC epiwafers. Securing a Series A investment round, the company has scaled its organization, established a streamlined team, and deployed a new high-capacity production facility to drive its growth strategy and future KPIs.

    – “Today we celebrate three significant milestones that signal SweGaN’s transition from a pure R&D company to a rigorous global semiconductor manufacturer.” says Dr. Jr-Tai Chen, CEO at SweGaN.

    – “Currently, there is a strong momentum in the Telecom industry to upgrade technology from 5G to 5G Advanced, continues Chen. SweGaN’s patented QuanFINE® buffer-free GaN-on-SiC material is well-suited to meet the demanding technical requirements of the new technology, particularly in terms of device efficiency and thermal management. This applies to the new Telecom standard 5G Advanced, as well as the strong demands for enhanced sensing capability in Defense applications. The new framework orders will accelerate product development and production ramp-up enabling SweGaN to tap the market opportunities in both the Telecom and Defense sectors.”

    With SweGaN’s new production facility in full swing, the company has the tools to fully embrace its ambitious scale-up strategy and significantly boost manufacturing capacity of next-generation GaN-on-SiC engineered epitaxial wafers. Simultaneously, the company aims to continue to innovate through new R&D initiatives and deepen partnerships with suppliers and customers to establish resilient supply chains.

    – “I take immense pride in our synergistic team, in both successfully qualifying SweGaN’s first epiwafer product with a device manufacturer and executing on the significant undertaking of bringing the the new high-capacity wafer production facility into operation, from planning to deployment,” continues Chen.

    Original – SweGaN

    Comments Off on SweGaN Secures Multiple Frame Agreements for QuanFINE® GaN-on-SiC Epitaxial Wafers
  • Vitesco Technologies Selects CoolGaN™ of Infineon Technologies to Boost Power Efficiency DCDC Converter

    Vitesco Technologies Selects CoolGaN™ of Infineon Technologies to Boost Power Efficiency DCDC Converter

    4 Min Read

    DCDC converters are essential in any electric or hybrid vehicle to connect the high-voltage battery to the low-voltage auxiliary circuits. This includes 12 V power headlights, interior lights, wiper and window motors, fans, and at 48 V, pumps, steering drives, lighting systems, electrical heaters, and air conditioning compressors. In addition, the DCDC converter is important for developing more affordable and energy-efficient vehicles with an increasing number of low voltage functions.

    According to TechInsights, the global automotive DC-DC converter market size was valued at USD 4 billion in 2023 and is projected to grow to USD 11 billion by 2030, exhibiting a CAGR of 15 percent during the forecast period. Gallium nitride (GaN) in particular plays a crucial role here, as it can be used to improve the power density in DCDC converters and on-board chargers (OBC).

    For this reason, Vitesco Technologies, a leading supplier of modern drive technologies and electrification solutions, has selected GaN to improve the power efficiency of its Gen5+ GaN Air DCDC converter. The CoolGaN™ Transistors 650 V from Infineon Technologies AG significantly improve the overall system performance while minimizing system cost and increasing ease of use. As a result, Vitesco created a new generation of DCDC converters that set new standards in power density (efficiency of over 96%) and sustainability for power grids, power supplies, and OBCs.

    The advantages of GaN-based transistors in high-frequency switching applications are considerable, but even more important is the high switching speed, which has been increased from 100 kHz to over 250 kHz. This enables very low switching losses, even in hard-switched half-bridges, with minimized thermal and overall system losses.

    In addition, Infineon’s CoolGaN Transistors feature high turn-on and turn-off speeds and are housed in a top-cooled TOLT package. They are air-cooled, eliminating the need for liquid cooling and thereby reducing overall system costs. The 650 V devices also improve power efficiency and density, enabling an output of 800 V. In addition, they feature an ON-resistance (R DS(on)) of 50 mΩ, a transient drain-to-source voltage of 850 V, an I DS,max of 30 A, and an I DSmax,pulse of 60 A.

    “We are delighted to see industry leaders like Vitesco Technologies using our GaN devices and innovating with their applications,” said Johannes Schoiswohl, Senior Vice President & General Manager, GaN Systems Business Line Head at Infineon. “The ultimate value of GaN is demonstrated when it changes paradigms, as in this example of moving from a liquid-cooled system to an air-cooled system.”

    With GaN Transistors, Vitesco Technologies was able to design its Gen5+ GaN Air DCDC converters with passive cooling, which reduces the system’s overall cost. The GaN devices also allow for simplified converter design and mechanical integration. As a result, the DCDC converters can be flexibly positioned in the vehicle, reducing the workload for manufacturers.

    The use of GaN also allows the power of the converters to be scaled up to 3.6 kW and the power density to be increased to over 4.2 kW/l. The Gen5+ GaN Air DCDC converters offer an efficiency of over 96 percent and improved thermal behavior compared to the Gen5 Liquid-Cooled converters. They provide a two-phase output of 248 A at 14.5 V continuous.

    The phases can be combined to achieve the maximum output power. Still, it is also possible to switch off one phase under partial load conditions and interleave the switching frequency between the two phases. In addition, by switching the input of two phases in series, the converters based on the CoolGaN power transistors 650 V can be used to implement 800 V architectures without exceeding the maximum blocking voltage of the device. The converters also feature an isolated half-bridge topology consisting of a GaN-based half-bridge, a fully isolated transformer, and an active rectifier unit for each phase.

    Original – Infineon Technologies

    Comments Off on Vitesco Technologies Selects CoolGaN™ of Infineon Technologies to Boost Power Efficiency DCDC Converter
  • Navitas Semiconductor Expanded Adoption of GaNFast ICs by Samsung Galaxy Family

    Navitas Semiconductor Expanded Adoption of GaNFast ICs by Samsung Galaxy Family

    1 Min Read

    Navitas Semiconductor announced that Samsung had expanded adoption of Navitas’ GaNFast ICs from the original flagship Galaxy S22, S23 and S24 to the mainstream Galaxy A, and revolutionary Galaxy Z Fold6 and Galaxy Z Flip6 smartphones with enhanced Galaxy AI features.

    GaN runs up to 20x faster than legacy silicon and enables chargers up to 3x more power and 3x faster charging in half size and weight. GaNFast power ICs enable high-frequency, high-efficiency power conversion, achieving up to a 50% shrink vs. prior designs.  

    The new 25W charger (EP-T2510) features new energy-saving technology to reduce standby losses by 75% to only 5 mW, which aligns with Navitas’ environmental advances, where every GaNFast IC saves 4 kg of CO2 vs. legacy silicon chips.

    “Since enabling the world’s first production GaN charger in 2018, Navitas has pioneered and leads the adoption of GaN to replace legacy silicon chips,” noted David Carroll, Sr. VP Worldwide Sales for Navitas. “Our production partnership with Samsung dates back to the Galaxy S22 Ultra, and today’s announcement reflects the dramatic expansion of GaN from niche, flagship designs to adoption in high-volume, mainstream phones.”

    Original – Navitas Semiconductor

    Comments Off on Navitas Semiconductor Expanded Adoption of GaNFast ICs by Samsung Galaxy Family
  • Infineon Technologies Expands GaN Portfolio with CoolGaN™ Drive Product Family

    Infineon Technologies Expands GaN Portfolio with CoolGaN™ Drive Product Family

    2 Min Read

    Many different trends are taking center stage in both consumer electronics and industrial applications, such as portability, electrification, and weight reduction. All of these trends require compact and efficient designs. They also go hand in hand with unconventional PCB designs with severe space constraints that limit the use of external components.

    To address these challenges, Infineon Technologies AG expands its GaN portfolio with the CoolGaN™ Drive product family. It consists of the CoolGaN Drive 700 V G5 single switches, integrating one transistor plus gate driver in PQFN 5×6 and PQFN 6×8 packages, as well as the CoolGaN Drive HB 600 V G5 devices, combining two transistors with integrated high- and low-side gate drivers in a LGA 6×8 package. The new product family enables improved efficiency, reduced system size, and overall cost savings. This makes the devices suitable for longer-range e-bikes, portable power tools, and lighter-weight household appliances such as vacuums, fans, and hairdryers.

    “For several years, Infineon has been focused on accelerating innovation in GaN to provide targeted solutions for real-world power challenges”, said Johannes Schoiswohl, Senior Vice President & General Manager, GaN Systems Business Line Head at Infineon. “The new CoolGaN Drive product family is another proof point of how we support our customers in developing compact designs with high power density and efficiency through GaN.”

    The CoolGaN Drive family offers a wide range of single switches and half bridges with integrated drivers based on the recently announced CoolGaN Transistors 650 V G5. Depending on the product group, the components feature a bootstrap diode and are characterized by loss-free current measurement, and adjustable switch-on and switch-off dV/dt. They also provide OCP/OTP/SCP protection functions. As a result, the devices enable higher switching frequencies, leading to smaller and more efficient system solutions with high power density. At the same time, the bill of materials (BoM) is reduced. This not only results in a lower system weight, but also reduces the carbon footprint.

    Samples of the half-bridge solutions are available now. Single-switch samples will be available starting Q4 2024. Further information is available at www.infineon.com/GaN-innovations.

    Original – Infineon Technologies

    Comments Off on Infineon Technologies Expands GaN Portfolio with CoolGaN™ Drive Product Family
  • VisIC Technologies Partners with Heraeus and PINK to Deliver Advanced D3GaN Power Module

    VisIC Technologies Partners with Heraeus and PINK to Deliver Advanced D3GaN Power Module

    3 Min Read

    VisIC Technologies Ltd. has partnered with Heraeus Electronics and PINK to develop an advanced power module utilizing D3GaN technology. This groundbreaking power module is based on a silicon nitride (Si₃N₄) ceramic substrate, an innovative silver (Ag) sintering process and advanced top side interconnect, promising unprecedented reliability and performance for battery electric vehicles (BEVs).

    The collaboration brings together VisIC’s expertise in GaN-based devices, Heraeus Electronics’ cutting-edge packaging materials know-how, and PINK’s state-of-the-art sintering technology. The synergy of these industry leaders has culminated in the development of a power module that is setting new standards for GaN based power modules to revolutionize the EV industry.

    VisIC’s D3GaN technology is at the heart of this power module, offering significant improvements in efficiency, thermal management, and power density. This technology leverages the superior electrical properties of gallium nitride to deliver faster switching speeds and higher power handling capabilities compared to traditional silicon-based devices.

    The use of a Si₃N₄ metal ceramic substrate is a key innovation in this power module. Si₃N₄ is known for its excellent thermal conductivity, mechanical strength, and reliability under high-temperature conditions. These properties are crucial for the demanding environment of electric vehicle applications, ensuring the power module can withstand the rigors of everyday use while maintaining optimal performance.

    The adoption of the silver sintering process by PINK enhances the thermal and electrical conductivity of the module. Silver sintering is a low-temperature bonding process that creates robust and reliable connections between components, improving the module’s overall durability and efficiency. This process is critical for the high reliability required in EV powertrains, where consistent performance is non-negotiable.

    The resulting power module is designed to meet the stringent reliability and performance standards of the electric vehicle industry. Its advanced materials and innovative construction techniques ensure it can deliver the high-power density of over 500Arms/650V and efficiency needed for modern BEVs, while also offering long-term reliability and durability at a cost point near silicon devices.

    This collaboration marks a significant milestone in the advancement of power electronics for electric vehicles. The integration of VisIC’s D3GaN technology with Heraeus Electronics’ sintering paste and PINK’s Ag and Cu sintering process and flexible sintering equipment sets a new benchmark for power module performance in the EV market. This innovation is expected to drive the adoption of GaN technology in EV applications, paving the way for more efficient, reliable, and sustainable electric transportation solutions.

    Tamara Baksht, CEO of VisIC, state: “We are thrilled to work with the leading manufacturer of sintering processes of Heraeus Electronics and PINK and adapt their experience into GaN based power modules to develop the next generation of power module for high volume automotive inverter applications.”

    PINK, Andrea Pink, CEO of PINK statement: “We are excited to work with such a future driven company as VisIC together with our long-term partner Heraeus Electronics, supporting the newest product innovation for GaN applications.”

    Heraeus Electronics Dr. Michael Jörger, EVP Head of Business Line Power Electronic Materials added: “With our materials, application know-how and engineering services we are glad to work with our partners on speeding up the innovative approach of highly efficient GaN modules for automotive applications.”

    Original – VisIC Technologies

    Comments Off on VisIC Technologies Partners with Heraeus and PINK to Deliver Advanced D3GaN Power Module
  • Navitas Semiconductor Released 4.5 kW AI Data Center Power Supply Reference Design

    Navitas Semiconductor Released 4.5 kW AI Data Center Power Supply Reference Design

    3 Min Read

    Navitas Semiconductor released its 4.5 kW AI data center power supply reference design, with optimized GaNSafe™ and Gen-3 ‘Fast’ (G3F) SiC power components. The optimized design enables the world’s highest power density with 137 W/in3 and over 97% efficiency.

    Next-generation AI GPUs like NVIDIA’s Blackwell B100 and B200 each demand over 1 kW of power for high-power computation, 3x higher than traditional CPUs. These new demands are driving power-per-rack specifications from 30-40 kW up to 100 kW.

    Navitas announced its AI Power Roadmap in March 2024, showcasing next-generation data center power solutions for the growing demand in AI and high-performance computing (HPC) systems. The first design was a GaNFast-based 3.2 kW AC-DC converter in the Common Redundant Power Supply (CRPS) form factor, as defined by the hyperscale Open Compute Project. The 3.2 kW CRPS185 (for 185 mm length) enabled a 40% size reduction vs. the equivalent legacy silicon approach and easily exceeded the ‘Titanium Plus’ efficiency benchmark, critical for data center operating models and a requirement for European data center regulations.

    Now, the latest 4.5 kW CRPS185 design demonstrates how new GaNSafe™ power ICs and GeneSiC Gen-3 ‘Fast’ (G3F) MOSFETs enables the world’s highest power density and efficiency solution. At the heart of the design is an interleaved CCM totem-pole PFC using SiC with full-bridge LLC topology with GaN, where the fundamental strengths of each semiconductor technology are exploited for the highest frequency, coolest operation, optimized reliability and robustness, and highest power density and efficiency. The 650 V G3F SiC MOSFETs feature ‘trench-assisted planar’ technology which delivers world-leading performance over temperature for the highest system efficiency and reliability in real-world applications.

    For the LLC stage, 650 V GaNSafe power ICs are ideal and unique in the industry with integrated power, protection, control, and drive in an easy-to-use, robust, thermally-adept TOLL power package. Additionally, GaNSafe power ICs offer extremely low switching losses, with a transient-voltage capability up to 800 V, and other high-speed advantages such as low gate charge (Qg), output capacitance (COSS), and no reverse-recovery loss (Qrr). High-speed switching reduces the size, weight, and cost of passive components in a power supply, such as transformers, capacitors, and EMI filters. As power density increases, next-gen GaN and SiC enable sustainability benefits, specifically CO2 reductions due to system efficiency increases and ‘dematerialization’. 

    The 3.2 kW and 4.5 kW platforms have already generated significant market interest with over 30 data center customer projects in development expected to drive millions in GaN and SiC revenue, ramping from 2024 into 2025.

    Navitas’ AI data center power supply reference designs dramatically accelerate customer developments, minimize time-to-market, and set new industry benchmarks in energy efficiency, power density and system cost, enabled by GaNFast power ICs and GeneSiC MOSFETs. These system platforms include complete design collateral with fully tested hardware, embedded software, schematics, bills-of-material, layout, simulation, and hardware test results.

    “AI is dramatically accelerating power requirements of data centers, processors and anywhere AI is going in the decades to come creating a significant challenge for our industry. Our system design center has stepped up to this challenge delivering a 3x increase in power in less than 18 months”, said Gene Sheridan, CEO of Navitas Semiconductor. “Our latest GaNFast technology, combined with our G3F SiC technology are delivering the highest power density and efficiency the world has ever seen…the perfect solution for the Blackwell AI processors and beyond.”

    Original – Navitas Semiconductor

    Comments Off on Navitas Semiconductor Released 4.5 kW AI Data Center Power Supply Reference Design
  • AIXTRON Supports Nexperia in Ramp-up of 200mm Volume Production for SiC and GaN Power Devices

    AIXTRON Supports Nexperia in Ramp-up of 200mm Volume Production for SiC and GaN Power Devices

    2 Min Read

    AIXTRON SE supports Nexperia B.V. in the ramp-up of its 200mm volume production for silicon carbide (SiC) and gallium nitride (GaN) power devices. With the new G10-SiC for the 200mm SiC volume ramp, Nexperia is placing a repeat order for AIXTRON SiC tools. This is complemented by an order for AIXTRON G10-GaN tools.

    Both GaN and SiC epitaxial films are essential for the design of next-generation energy-efficient Field-Effect (FET) or Metal-Oxide-Field Effect (MOSFET) transistors to be used in various power conversion applications ranging from data centers and solar inverters in electric vehicles (EV) or trains.

    Nexperia has decades of experience in the development of power devices, achieving more than 2.1 billion USD in revenue in 2023. After releasing its first GaN FET device in 2019 and its first SiC MOSFET in 2023, Nexperia continues to expand its portfolio with new high-reliability and power-efficient devices.

    Nexperia, headquartered in Nijmegen (Netherlands), operates front-end factories in Hamburg (Germany) and Greater Manchester (England). The AIXTRON epitaxy systems will be installed at Nexperia’s wafer fab in Hamburg (Germany), further strengthening the semiconductor production capabilities in the region. Nexperia’s Hamburg site produces approximately 100 billion discrete semiconductors annually, accounting for about a quarter of the global production of this type of products.

    “We are honored to strengthen our alliance with Nexperia, a pivotal player in the semiconductor landscape. Our G10 epitaxy solutions are at the heart of this collaboration, bolstering Nexperia’s growth strategies and enabling the high-volume production of wide bandgap semiconductors for commercial applications. Together, we are setting the pace for the industry’s transition to more energy-efficient SiC and GaN solutions”, said Dr. Felix Grawert, CEO and President of AIXTRON SE.

    “As we advance our technological capabilities and market presence in high-power semiconductor production, our strategic partnership with AIXTRON is transformative. Integrating the G10 systems will significantly enhance our wide bandgap technology development and production capabilities. We build on AIXTRON’s proven uniformity and leverage the additional productivity gains of AIXTRON’s G10 tools to scale up our production efficiently and cost-effectively. With the new G10 tools in our Hamburg facility, we are poised for further advancements in our production capabilities,” said Achim Kempe, COO at Nexperia B.V.

    Original – AIXTRON

    Comments Off on AIXTRON Supports Nexperia in Ramp-up of 200mm Volume Production for SiC and GaN Power Devices
  • U.S. International Trade Commission Finds Key EPC Patents Valid and Foundational Patent Infringed by Innoscience Technology

    U.S. International Trade Commission Finds Key EPC Patents Valid and Foundational Patent Infringed by Innoscience Technology

    3 Min Read

    Efficient Power Conversion (EPC) announced that it has moved one step closer to achieving preeminence in the gallium nitride (GaN) power semiconductor industry, as its intellectual property rights to this revolutionary technology were upheld for the third time in three months. The next-generation wide bandgap semiconductors developed by EPC are essential to artificial intelligence (AI), satellites, fast chargers, lidar, humanoid robots and many other transformational technologies.

    The U.S. International Trade Commission (ITC) found two of EPC’s key patents valid and one, the Company’s foundational patent, infringed by Innoscience (Zhuhai) Technology Co., Ltd. and its affiliate, Innoscience America, Inc. The ITC’s recommendation comes on the heels of two recent decisions from the China National Intellectual Property Administration (CNIPA), which similarly validated EPC’s counterpart patents in China. The ITC initial determination is a significant milestone in solidifying EPC’s leadership in wide bandgap semiconductors and could lead to a ban later this year on importation of Innoscience’s infringing products into the United States.

    “The ITC’s finding that Innoscience uses our patented technology without authorization puts EPC in an enviable position, as U.S. and Chinese regulatory bodies have upheld the validity of our patents,” said Alex Lidow, CEO and Co-Founder of EPC.

    “The Commission’s recommendations validate nearly two decades of hard work, resources and R&D that went into developing EPC’s uniquely valuable intellectual property portfolio,” Dr. Lidow added.

    Over the last 15 years, EPC has capitalized on its first-mover advantage to develop a broad portfolio of over 200 GaN-related patents and over 150 products, which include its rapidly growing family of integrated circuits, automotive qualified and radiation hardened devices.

    Compared with traditional silicon-based power devices, GaN represents a significant leap, with higher efficiency, faster switching speeds, smaller size and lower cost. GaN power devices are integral to self-driving vehicles, medical and communications devices, next-generation rapid chargers, drones, satellites, data centers, e-bikes, solar power systems and humanoid robots, among many other applications. Most notably, EPC’s cutting-edge semiconductors are central to powering the AI revolution by significantly freeing up space for extra computing power while simultaneously reducing energy consumption.

    The ITC’s preliminary ruling found both U.S. patents that EPC asserted against Innoscience valid. It also found “infringement [by Innoscience] of U.S. Patent No. 8,350,294,” EPC’s foundational patent used broadly across multiple industries. The second EPC patent, U.S. Patent No. 8,404,508, was found valid, but not infringed by Innoscience. The Commission’s final determination is expected to be issued on November 5, 2024.

    Original – Efficient Power Conversion

    Comments Off on U.S. International Trade Commission Finds Key EPC Patents Valid and Foundational Patent Infringed by Innoscience Technology