-
GaN / LATEST NEWS / PROJECTS / WBG3 Min Read
Texas Instruments announced a long-term collaboration with Delta Electronics, a global power and energy management manufacturer, to create next-generation electric vehicle (EV) onboard charging and power solutions. This work will leverage both companies’ research and development capabilities in power management and power delivery in a joint innovation laboratory in Pingzhen, Taiwan. Together, TI and Delta aim to optimize power density, performance and size to accelerate the realization of safer, faster-charging and more affordable EVs.
“The transition to electric vehicles is key to helping achieve a more sustainable future, and through years of collaboration with Delta Electronics, we have a solid foundation to build upon,” said Amichai Ron, senior vice president for Embedded Processing at TI. “Together with Delta, we will use TI semiconductors to develop EV power systems like onboard chargers and DC/DC converters that are smaller, more efficient and more reliable, increasing vehicle driving range and encouraging more widespread adoption of electric vehicles.”
“Delta has been developing high-efficiency automotive power products, systems and solutions since 2008 to help reduce transportation-related carbon emissions,” said James Tang, executive vice president of Mobility and head of the Electric Vehicle Solutions business group at Delta Electronics.
“Through the establishment of this joint innovation laboratory with TI, Delta intends to leverage TI’s abundant experience and advanced technology in digital control and GaN to enhance the power density and performance of our EV power systems. With more leading-edge product development and design capabilities, we aim to achieve closer technology exchange and collaboration to accelerate product development and improve product safety and quality. We look forward to furthering our technology leadership and creating a win-win situation in the rapidly developing electric vehicle market.”
Three phases of development for next-generation automotive power solutions
- Phase one for the collaboration focuses on Delta’s development of a lighter-weight, cost-effective 11kW onboard charger, using TI’s latest C2000™ real-time microcontrollers (MCUs) and TI’s proprietary active electromagnetic interference (EMI) filter products. The companies are working together using TI’s products to reduce the charger’s size by 30% while achieving up to 95% power conversion efficiency.
- In phase two, TI and Delta will leverage the latest C2000 real-time MCUs for automotive applications to enable automakers to achieve automotive safety integrity levels (ASILs) up to ASIL D, which represents the strictest automotive safety requirements. Highly integrated automotive isolated gate drivers will further enhance the power density of onboard chargers, while also minimizing overall solution size.
- In phase three, the two companies will collaborate to develop the next generation of automotive power solutions, capitalizing on TI’s more than 10 years of experience in developing and manufacturing products with gallium nitride (GaN) technology.
“The rapid growth of electronics in automotive applications has enabled more feature-rich, efficient and safer vehicles. However, technical challenges remain,” said Luke Lee, president of Taiwan, Japan, Korea and South Asia, Texas Instruments. “Having been in Taiwan for 55 years, coupled with decades of experience in automotive power management, TI has built a strong connection with the local automotive industry. Establishing this collaboration and joint innovation laboratory with Delta is just one more way TI is driving vehicle electrification forward.”
Original – Texas Instruments
-
Navitas Semiconductor announced that its GaNFast power ICs have been selected to lead Lenovo’s latest GaN technology chargers; Xiaoxin 105 W GaN charger, and the Legion C 170 W GaN charger, respectively designed for daily travel and gaming power, bringing consumers a brand new fast charging experience.
The Xiaoxin 105 W GaN charger is designed for daily travel. It outputs 105 W of power and is equipped with 3 ports (2C1A) supporting multiple protocols; easily achieving the charging needs of various devices simultaneously. At only 206 g, the 105 W fast-charger is 41% lighter than a typical 100 W computer adapter and takes only 34 minutes to charge the Xiaoxin 16 Pro to 50%. The Navitas NV6138 GaNFast power IC with GaNSense™ technology is at the heart of the high-frequency flyback topology design, providing a stable, durable, and efficient charging experience.
The Legion C170 W GaN charger is designed specifically for hardcore gamers. It delivers 170 W of continuous power through a single port to meet the high-power demands of gaming devices. At only 245 grams, it’s 78% lighter than Legion Y9000P’s original inbox charger and can charge up to 2 times faster than the Legion C140 W Charger. The Navitas NV6136 GaNFast power IC with GaNSense technology is used in the PFC stage, featuring loss-less current sensing and 6 times faster short-circuit protection than competing solutions, delivering cooler operation, superior efficiency, reliability, and power density.
Lenovo’s long-term collaboration with Navitas has brought a series of groundbreaking fast chargers to the market and played a significant role in raising market awareness on showcasing the benefits of GaN technology. At the Lenovo YOGA CC65 dual-port GaN charger launch event in 2021, Navitas’ 6-inch GaN wafer and GaNFast power ICs were publicly showcased for the first time, unveiling the mysteries of this leading technology to consumers.
In terms of gaming products, Navitas collaborated with Lenovo to create a 90 W charger for the Lenovo Legion Pro Gaming Phone and a 135 W, C135 W GaN charger for the Legion 5 and 5 Pro Gen 7 laptops. For lightweight travel, Lenovo developed a series of compact, lightweight powerful GaN chargers using Navitas technology, including the revolutionary compact Thinkplus ‘lipstick’ and the ultra-thin Thinkbook ‘biscuit’ charger.
Lenovo and Navitas are not only partners in power technology but also pioneers in sustainability. Lenovo Group is verified by the Science Based Targets initiative (SBTi) for net zero targets and Navitas is the world’s first power semiconductor company to achieve CarbonNeutral® certification. Navitas’ advanced GaN technology enables Lenovo to continuously create smaller, lighter chargers with higher power density, significantly reducing the number of passive and magnetic components inside the charger, achieving CO2 reduction in production through “dematerialization”. The increased efficiency reduces power loss during use, thus further lowering carbon emissions in the product lifecycle.
“With the support of Navitas GaNFast power ICs, we have successfully introduced two new Xiaoxin and Legion GaN chargers to the market, enabling a lightweight and powerful charging experience for daily travel and gaming performance,” said Elon Chen, Product Manager of Consumer Business for Lenovo Group China. “Moreover, the successful application of Navitas’ GaNFast technology continuously reduces the size and weight of chargers, highly increasing efficiency, bringing convenience to consumers, while contributing to carbon reduction.”
“Powerland is very pleased to collaborate with Navitas again to create two high-performance and lightweight GaN chargers for Lenovo,” said Dr. Wang Chuanyun, VP of R&D for Powerland Group. “Powerland is dedicated to pushing the envelope of technology to build leading power products for our clients. Efficient, reliable, and easy-to-use GaNFast power ICs are crucial to realize that.”
“Navitas is very honored to enter Lenovo’s supply chain twice in a short period, providing high-efficiency and stable GaNFast fast charging power into two important Lenovo products,” said Charles Zha, VP and GM of Navitas China. “By working closely with Powerland, our highly integrated GaNFast technology has enabled Lenovo to continuously achieve leading-edge results in size, performance, and reliability of chargers. With innovative laptops like AI PCs on the rise, Navitas predicts a surge in demand for powerful GaNFast charging solutions. Navitas is on a mission to push the limits of gallium nitride technology, empowering global partners like Lenovo to slash energy usage and emissions in charger and adapter production. Together, we will speed towards a greener, more sustainable planet!”
Original – Navitas Semiconductor
-
GaN / LATEST NEWS / PRODUCT & TECHNOLOGY / WBG2 Min Read
EPC Space announced the introduction of two new rad-hard GaN discretes with low on-resistance and extremely low gate charge for high power density solutions that are lower cost and more efficient than the nearest comparable radiation-hardened silicon MOSFET.
The EPC7001BSH is a Rad-Hard eGaN® 40 V, 50 A, 11 mΩ Surface Mount (FSMDB) and the EPC7002ASH is a Rad-Hard eGaN 40 V, 15 A, 28 mΩ Surface Mount (FSMDA). Both devices have a total dose radiation rating greater than 1,000K Rad(Si) and SEE immunity for LET of 83.7 MeV/mg/cm2 with VDS up to 100% of rated breakdown. These devices come packaged in hermetic packages in very small footprints.
EPC’s eGaN FETs and ICs offer a higher performing alternative to conventional rad hard silicon devices for high reliability and space applications. EPC’s Rad hard devices are significantly smaller, have 40 times better electrical performance, and lower overall cost than rad hard silicon devices. Moreover, EPC Space’s rad hard devices exhibit superior resistance to radiation, supporting higher total radiation levels and SEE LET levels compared to traditional silicon solutions.
Part Number Drain to Source Voltage (VDS) Drain to Source Resistance (RDS(on)) Single-Pulse Drain Current (IDM) Package Size (mm) Total Dose (TID) Heavy Ion Single Event Effects (SEE) EPC7001BSH 40 11 mΩ 120 5.7 x 3.9 1 Mrad SEE immunity up to LET of 83.7 MeV/mg/cm2 with VDS up to 100% of rated Breakdown EPC7002ASH 40 28 mΩ 40 3.4 x 3.4 1 Mrad SEE immunity up to LET of 83.7 MeV/mg/cm2 with VDS up to 100% of rated Breakdown With higher breakdown strength, lower gate charge, lower switching losses, better thermal conductivity, and lower on-resistance, power devices based on GaN significantly outperform silicon-based devices and enable higher switching frequencies resulting in higher power densities, higher efficiencies, and more compact and lighter weight circuitry for critical spaceborne missions.
Applications benefiting from the performance of these products include DC-DC power supplies for satellites and space mission equipment, motor drives for robotics, instrumentation and reaction wheels, deep space probes, and ion thrusters.
“These two new additions to our rad-hard product line offer designers high power and low on-resistance solutions enabling a generation of power conversion and motor drives in space operating at higher efficiencies, and greater power densities than what is achievable with traditional silicon-based rad-hard solutions,” said Bel Lazar, CEO of EPC Space.
Original – EPC Space
-
GaN / LATEST NEWS / PRODUCT & TECHNOLOGY / WBG3 Min Read
Cambridge GaN Devices has launched its lowest ever on-resistance (RDS(on)) parts which have been engineered with a new die and new packages to deliver the benefits of GaN to high-power applications such as data centres, inverters, motor drives and other industrial power supplies. New ICeGaN™ P2 series ICs feature RDS(on) levels down to 25 mΩ supporting multi kW power levels with the highest efficiency.
ANDREA BRICCONI | CHIEF COMMERCIAL OFFICER, CGD
“The explosive growth of AI is leading to a significant increase in energy consumption, prompting data centre systems designers to prioritise the use of GaN for high-power, efficient power solutions. This new family of Power GaN ICs is a stepping stone for CGD to support our customers and partners on achieving and exceeding 100 kW/rack power density in Data Centres, required by most recent TDP (Thermal Design Power) trends for High-density computing. On the other hand, developers of motor control inverters are looking to GaN to reduce heat for smaller, longer-lasting system power. These are just two examples of markets that CGD is now aggressively targeting with these new high-power ICeGaN ICs. Simplified gate driver design and reduced system costs, combined with advanced high-performance packaging, make P2 series ICs an excellent choice for these applications.”
Incorporating an on-chip Miller Clamp to eliminate shoot-through losses during fast switching and implementing 0 V turn off to minimise reverse conduction losses, ICeGaN Series P2 ICs outperform discrete e-Mode GaN and other incumbent technologies.
The new packages offer improved thermal resistance performance as low as 0.28 K/W – again, equivalent or better than anything else currently available on the market – and the dual-gate pinout of the dual side DHDFN-9-1 (Dual Heat-spreader DFN) package facilitates optimal PCB layout and simple paralleling for scalability, enabling customers to address multi kW applications 6 with ease. The new packages have also been engineered to improve productivity, with wettable flanks to simplify optical inspection.
New P2 ICeGaN GaN power ICs are sampling now. The P2 series includes four devices with RDS(on) levels of 25 mΩ and 55 mΩ, rated at 27 A and 60 A, in 10 x 10 mm footprint DHDFN-9-1 and BHDFN-9-1 (Bottom Heat-spreader DFN) packages. In common with all CGD ICeGaN products, the P2 series can be driven using any standard MOSFET or IGBT driver.
Two demo boards feature the new P2 devices: a single leg of a 3-phase automotive inverter demo board, developed in partnership with the French public R&I institute IFP Energies , and a 3 kW totem-pole power factor correction demo board.
The new P2 series ICeGaN GaN power ICs and demo boards were unveiled publicly at the PCIM exhibition on CGD’s booth # 7 643, Nürnberg Messe, Nuremberg, Germany, 11-13th June 2024.
Original – Cambridge GaN Devices
-
GaN / LATEST NEWS / WBG3 Min Read
hofer powertrain announced the commencement of a groundbreaking research project in collaboration with the Swiss Federal Institute of Technology in Zurich (ETH Zurich), focusing on the development of a state-of-the-art multilevel Gallium Nitride (GaN) traction inverter. Supported by a prestigious funding from INNOSUISSE, the Swiss Agency of Innovation Promotion, which advances science-based innovations in the interest of the economy and society in Switzerland. The next steps in this project will enable the pursuit of cutting-edge advancements in power electronics even further.
The core objective of the project is to rapidly develop an advanced multilevel traction inverter integrating Gallium Nitride (GaN) switches. hofer powertrain has made significant strides in developing advanced multilevel power electronics utilizing Gallium Nitride (GaN) chip technology over the last four years, resulting in enhanced efficiency and power density compared to silicon-based systems.
Their latest 800V GaN inverters have showcased remarkable performance in tests. The collaborative project with ETH Zurich builds on that experience to realize a revolutionary inverter solution, which aims to leverage a novel modulation scheme, operate at very high switching frequencies, and incorporate a wide array of additional pioneering features that the company has been working on in recent years.
ETH has appointed a highly qualified PhD candidate to lead the research efforts, ensuring the project benefits from fresh, innovative thinking and rigorous academic oversight. The project will be supervised by Professor Johann Biela from ETH Zurich, a renowned expert in power electronics, and Lukasz Roslaniec, the division lead of power electronics at hofer powertrain, who brings extensive industry experience to the table and has been working on these technologies proactively.
The funding from Innosuisse underscores the project’s significance and potential impact in the country and the DACH-region. This financial support will facilitate the design of a new, optimized, and highly efficient three-level GaN power inverter, featuring adaptive gate drivers to improve switching controllability and further reduce energy losses. The outcome will significantly enhance the performance and efficiency of powertrain systems for modern electrified vehicles, making a substantial contribution to the future of mobility.
Dr. Lukasz Roslaniec highlights the driving force behind this project, stating, “We eagerly anticipate the fruitful collaboration with ETH, renowned for its groundbreaking work in Power Electronics and Electric Drives. We are confident that our partnership will yield solutions that are not only technologically advanced and unparalleled but also financially accessible, thereby pushing the adoption of electric vehicles and environmental sustainability in the region and beyond.”
Original – hofer powertrain
-
GaN / LATEST NEWS / PRODUCT & TECHNOLOGY / WBG3 Min Read
Cambridge GaN Devices is partnering with Qorvo® to develop a reference design and evaluation kit (EVK) that showcases GaN for motor control applications. CGD aims to speed the use of GaN power ICs in BLDC and PMSM applications, resulting in higher power, highly efficient, compact and reliable systems. Qorvo is building an EVK for its PAC5556A motor/control IC that is powered by CGD’s ICeGaN™ (IC-enhanced GaN) technology.
GIORGIA LONGOBARDI | CEO, CGD
“Because ICeGaN – unlike other GaN implementations from other companies – integrates the interface circuitry but not the controller together with the GaN HEMT, it is simple to combine with highly integrated motor controller and drive ICs such as Qorvo’s PAC5556A 600 V High Performance BLDC / PMSM Motor Controller and Driver. We are delighted to partner with Qorvo to enable motor controller and driver applications to enjoy the benefits of GaN power.”JEFF STRANG | GENERAL MANAGER, POWER MANAGEMENT BUSINESS UNIT, QORVO
“Wide bandgap semiconductors such as GaN and SiC are being actively considered in various motor control applications for the power density and efficiency benefits they bring. CGD’s ICeGaN technology offers ease of use and reliability, two crucial factors for motor control and drive designers. We are excited to see the reaction of design engineers when they experience the power of GaN combined with our highly integrated PAC5556A 600V BLDC motor control solution.”GaN brings a variety of benefits, primarily lower losses, which results in higher efficiency, leading to increased power availability and less heat. This reduces the need for complex, bulky, and costly thermal management solutions, resulting in smaller, more powerful systems that have a longer life. GaN also delivers higher torque at low speeds and, therefore, more accurate control. Also, GaN allows high-speed switching, which can reduce audible noise, which is especially valued for domestic items such as ceiling fans, heat pumps, and refrigerators.
In addition to being easy to use, ICeGaN offers several other significant benefits over other GaN devices. The gate drive voltage of ICeGaN is compatible with IGBTs. Because ICeGaN integrates the Miller clamp within the GaN IC, a negative Turn-Off voltage is not required, and low-cost current drivers can be used. Finally, ICeGaN includes a useful current sense function, simplifying circuit design and reducing BOM.
The reference design is available today, and EVK RD5556GaN will be available for purchase in Q324. It will also be shown on CGD’s booth Hall 7 643 at the PCIM exhibition in Nuremberg, Germany, 11-13 June. Qorvo will also exhibit at PCIM, on booth Hall 7 406.
Original – Cambridge GaN Devices
-
GaN / LATEST NEWS / PRODUCT & TECHNOLOGY / WBG3 Min Read
Infineon Technologies AG announced two new CoolGaN™ product technologies, CoolGaN bidirectional switch (BDS) and CoolGaN Smart Sense. CoolGaN BDS provides exceptional soft- and hard-switching behavior, with bidirectional switches available at 40 V, 650 V and 850 V. Target Applications of this family include mobile device USB ports, battery management systems, inverters, and rectifiers.
The CoolGaN Smart Sense products feature lossless current sensing, simplifying design and further reducing power losses, as well as transistor switch functions integrated into one package. They are ideal for usage in consumer USB-C chargers and adapters.
The CoolGaN BDS high voltage will be available at 650 V and 850 V and feature a true normally-off monolithic bi-directional switch with four modes of operation. Based on the gate injection transistor (GIT) technology, the devices have two separate gates with substrate terminal and independent isolated control. They utilize the same drift region to block voltages in both directions with outstanding performance under repetitive short-circuit conditions.
Applications can benefit by using one BDS instead of four conventional transistors, resulting in higher efficiency, density, and reliability. Furthermore, significant cost savings are achieved. The devices optimize performance in the replacement of back-to-back switches in single-phase H4 PFC and HERIC inverters and three-phase Vienna rectifiers. Additional implementations include single-stage AC power conversion in AC/DC or DC/AC topologies.
The CoolGaN BDS 40 V is a normally-off, monolithic bi-directional switch based on Infineon’s in-house Schottky Gate GaN technology. It can block voltages in both directions, and through a single-gate and common-source design, it is optimized to replace back-to-back MOSFETs used as disconnect switches in battery-powered consumer products. The first 40 V CoolGaN BDS product has a 6 mΩ R DS(on), with a range of products to follow. Benefits of using 40 V GaN BDS vs. back-to-back Si FETs include 50 – 75 percent PCB area savings and a reduction of power losses by more than 50 percent, all at a lower cost.
The CoolGaN Smart Sense products feature 2 kV electrostatic discharge withstand and can connect to controller current sense for peak current control and overcurrent protection. The current sense response time is ~200 ns, which is equal or less than common controller blanking time for ultimate compatibility.
Implementing the devices results in increased efficiency and cost savings. At a higher R DSs(on) of e.g. 350 mΩ, the CoolGaN Smart Sense products offer similar efficiency and thermal performance at lower cost compared to traditional 150mΩ GaN transistors. Moreover, the devices are footprint compatible to Infineon’s transistor-only CoolGaN package, eliminating the need for layout rework and PCB respin, and further facilitating design with Infineon’s GaN devices.
Engineering samples of the CoolGaN BDS 40 V are available now for 6 mΩ and will follow in Q3 2024 for 4 mΩ and 9 mΩ. Samples of the CoolGaN BDS 650 V will be available in Q4 2024, and 850 V will follow early 2025. CoolGaN Smart Sense samples will be available in August 2024. Further information is available here: https://www.infineon.com/cms/en/product/promopages/GaN-innovations/
Original – Infineon Technologies