-
GaN / LATEST NEWS / WBG3 Min Read
Infineon Technologies AG announced its partnership with OMRON Social Solutions Co. Ltd., a pioneering company in social systems technology. Combining Infineon’s first-class gallium nitride (GaN) based power solutions with the innovative circuit topology and control technology of OMRON now enables one of Japan’s smallest and lightest vehicle-to-everything (V2X) charging systems by OMRON Social Solutions.
This partnership will further drive innovation towards wide bandgap materials in power supplies, help to accelerate the transition to renewable energies, a smarter grid, and the adoption of electric vehicles, while fostering decarbonization and digitalization.
For the V2X system, KPEP-A series, Infineon’s CoolGaN™ technology is utilized combined with a unique control technology. OMRON Social Solutions has upgraded its EV charger and discharger system now allowing for bi-directional charging and discharging paths between renewable energy sources, the grid, and EV batteries.
The KPEP-A series is one of the smallest and lightest multi-V2X systems in Japan with a 60% reduction in size and weight compared to similar conventional charger and discharger designs yet providing a charging capability of 6 kW. With the integration of Infineon’s CoolGaN solution, the power efficiency of the V2X systems has increased by more than 10% at light load and around 4% at rated load. By improving efficiency and a reduction in size and weight, the new system allows easier installation and maintenance while enabling more elegant designs and offering a wider range of options for installation locations.
“We are thrilled to partner with OMRON Social Solutions as our CoolGaN based solutions directly contribute to speed up the transition to renewable energies which reduces CO2 emissions and drives decarbonization,” said Adam White, Division President Power & Sensor Systems at Infineon. “It will also make charging of electric vehicles easier and more convenient for consumers, helping to overcome one of the biggest barriers to EV adoption.”
Atsushi Sasawaki, Managing Executive Officer and Senior General Manager for Energy Solutions Business of OMRON Social Solutions said: “Having access to a broad portfolio of WBG solutions significantly increases the functionality, performance and quality of our products. With Infineon, we get the best-in-class application know-how for creating new and improved charging and discharging systems, providing a high level of satisfaction for our customers and end-users. We look forward to further developing GaN- and SiC-based power solutions together with Infineon to help drive renewable energy and electric vehicles.”
Wide bandgap semiconductors made of silicon carbide and gallium nitride differ significantly from conventional semiconductors as they allow for greater power efficiency, smaller size, lighter weight, and lower overall cost. Infineon offers the broadest product and technology portfolio including silicon, silicon carbide and gallium-nitride-based devices.
As the leading power supplier with more than two decades of heritage in SiC and GaN technology development, Infineon caters to the need for smarter, more efficient energy generation, transmission, and consumption.
Original – Infineon Technologies
-
EPC introduces three evaluation boards – EPC9179, EPC9181, and EPC9180 – featuring pulse current laser drivers of 75 A, 125 A, and 231 A , showcasing EPC’s AEC-Q101 GaN FETs. These FETs; EPC2252, EPC2204A, and EPC2218A are 30% smaller and more cost-effective than their predecessors. Designed for both long and short-range automotive lidar systems, these boards expedite solution evaluation with varied input and output options.
All boards share identical functionality, differing only in peak current and pulse width. Utilizing a resonant discharge power stage, they employ a ground-referenced GaN FET driven by LMG1020 gate driver. The GaN FET’s ultrafast switching enables rapid discharge of a charged capacitor through the load’s stray inductance, enabling peak discharge currents of tens to hundreds of amps within nanoseconds.
The printed circuit board is designed to minimize power loops and common source inductance while offering mounting flexibility for laser diodes or alternative loads. To enhance user-friendliness, all boards ship with EPC9989 interposer PCBs, featuring various footprints to accommodate a variety of laser diodes or other loads. Customers can choose one that meets their needs to evaluate the GaN solutions.
The EPC9179/81/80 boards are designed to be triggered from 3.3V logic or differential logic signals such as LVDS. For single-ended inputs, the boards can operate with input voltages down to 2.5 V or 1.8 V with a simple modification. Designing an automotive lidar system is complex, and finding a reliable solution is challenging. The purpose of these evaluation boards is to simplify the evaluation of powerful GaN-based lidar drivers that switch faster and deliver higher pulse current than other semiconductor solutions. For technical details, EPC offers full schematics, bill of materials (BOM), PCB layout files, and a quick start guide on EPC’s website.
“To meet the growing demand for automotive lidar, these cost-effective boards, featuring our latest AEC products, streamline evaluation, reducing time-to-market with exceptional switching performance,” said Alex Lidow, CEO, and co-founder of EPC.
Original – EPC
-
GaN / LATEST NEWS / PRODUCT & TECHNOLOGY / WBG2 Min Read
Teledyne e2v HiRel announced the addition of new space screened versions of its popular 100 V, 90 A and 650 V, 30 A high reliability gallium nitride high electron mobility transistors (GaN HEMTs).
- TDG650E30BSP
- TDG100E90BSP
- TDG100E90TSP
The new parts go through NASA Level 1 or ESA Class 1 screening flow and can be brought up to full Level 1 conformance with extra qualification testing if desired. Typical applications include battery management, dc-dc converters, and space motor drives.
Two new 100 V parts are available with both bottom-side and top-side cooled packaging. One new 650 V 30 A GaN-on-Silicon power transistor is available in a bottom-side cooled package. Each device is available with options for EAR99 or European sourcing.
Teledyne e2v HiRel’s GaN HEMTs feature single wafer lot traceability, extended temperature performance from -55 to +125°C, and low inductance, low thermal resistance packaging.
“Our customers have embraced the previous release of 650 V space screened devices, and we have expanded our portfolio to provide additional options. These GaN HEMT products save customers time and money by providing standard devices without the need for additional screening.” said Mont Taylor, VP of Business Development for Teledyne e2v HiRel. “Our expanded catalog with standard burn-in make it easy for designers to utilize the latest in GaN in their designs.”
Gallium nitride devices have revolutionized power conversion in other industries and are now available in radiation tolerant, plastic encapsulated options that have undergone stringent reliability and electrical testing to help ensure mission critical success. The release of these new GaN HEMTs delivers to customers the efficiency, size, and power-density benefits required in critical aerospace and defense power applications.
Original – Teledyne e2v HiRel
-
GaN / LATEST NEWS / WBG4 Min Read
Aehr Test Systems announced it has received an initial customer order for a FOX-NP™ wafer level test and burn-in system and a FOX WaferPak™ Aligner to be used for gallium nitride (GaN) power devices. The customer is a leading global supplier of semiconductor devices used in electric vehicles and power infrastructure and adds another major customer to the list of companies using Aehr’s FOX products for wafer level test and burn-in of wide bandgap compound semiconductors. The FOX-NP system, including the FOX WaferPak Aligner, is scheduled to ship and be installed in the current fiscal quarter.
As Aehr’s first gallium nitride customer to order a system, this company selected Aehr due in part to its unique ability to offer a total solution that allows customers to apply thermal and electrical stress conditions to thousands of devices while still in wafer form. Aehr’s cutting-edge technology provides critical geolocation information across the wafer while inducing the extrinsic (early life) failures that would otherwise fail in the field without reducing the long-term reliability or life of the good devices.
Gayn Erickson, President and CEO of Aehr Test Systems, commented, “After seeing the positive results from their long and extensive evaluation of our FOX wafer level test systems for their silicon carbide devices, this customer decided to first move forward with our FOX-NP system to test their gallium nitride devices’ long-term reliability failure rates, as well as qualify the production extrinsic failure screening process for their devices in applications where safety, reliability, and/or security are critical.
A key consideration behind their decision is that the FOX-NP system is 100% compatible with the Aehr FOX-XP system that is targeted for high volume production and can support all the test modes needed for both gallium nitride and silicon carbide device testing and burn-in, including high-voltage testing of up to 2,000 volts with full wafer test without electrical arcing that can damage the wafer, which is a distinct advantage of our unique patented technology.
“Similar to silicon carbide, gallium nitride semiconductor MOSFETs are considered wide bandgap devices with much higher efficiencies in terms of power conversion than silicon, with gallium nitride being particularly good for lower power devices such as under 1000 watt power converters used in consumer devices such as cell phones, tablets, and laptop computers, as well as being targeted for automotive power converters for all the electrical systems in automobiles, whether electric vehicles or traditional gasoline automobiles. Gallium nitride MOSFETs are also believed by many industry analysts and technical communities to likely take over silicon as the power converter of choice for photovoltaic (solar panel) applications.
“Gallium nitride and silicon carbide devices both have excellent long-term intrinsic reliability, making them very good for automotive and industrial applications. But both also experience higher than acceptable early life or extrinsic failures related to the material and processing steps. Gallium nitride and silicon carbide semiconductor suppliers can add a special stress or screening test known as burn-in on 100% of the devices to identify and remove these early life failures so that they can meet the end customers’ target reliability needs. This 100% burn-in requirement is not unique to these devices, as it is also the case with microprocessors and microcontrollers, dynamic random-access memories (DRAM), flash non-volatile memories, as well as many sensors used in automotive and other industrial applications.”
Aehr enables its customers to cost-effectively implement the needed testing and qualification process for semiconductor devices that experience early life failures by not only applying the electrical stress condition to every device on the wafer but by also testing up to 18 wafers at a time using the FOX-XP production test and burn in system. These electrical tests are done with up to thousands of precise calibrated electrical source and measurement instruments per wafer. These tests are done while maintaining the temperature at an accurately programmed thermal temperature across each of the wafers using a direct conduction thermal transfer via a proprietary patented precision thermal chuck per wafer.
The FOX-NP compliments Aehr’s production FOX-XP system by using the exact same test ‘Blades’ that are in the FOX-XP to allow 100% correlation between the results on the FOX-NP to the FOX-XP.
The FOX-XP and FOX-NP systems, available with multiple WaferPak Contactors (full wafer test) or multiple DiePakTM Carriers (singulated die/module test) configurations, are capable of functional test and burn-in/cycling of devices such as silicon carbide and gallium nitride power semiconductors, silicon photonics as well as other optical devices, 2D and 3D sensors, flash memories, magnetic sensors, microcontrollers, and other leading-edge ICs in either wafer form factor, before they are assembled into single or multi-die stacked packages, or in singulated die or module form factor.
Original – Aehr Test Systems
-
GaN / LATEST NEWS / WBG3 Min Read
Navitas Semiconductor announced that NIO, a global, leading, new-energy vehicle maker has released its inaugural smartphone, the NIO Phone with a powerful 66 W fast charger featuring Navitas’ next-generation gallium-nitride (GaN) GaNFast™ power ICs equipped with GaNSense™ technology. This enhancement delivers flagship-level charging efficiency, providing end users with a better vehicle-centric mobile interconnection experience. New GaNFast ICs are replacing legacy silicon chips to enable next-gen fast-charging for mobile phones, tablets and laptops.
The flagship NIO Phone features the leading Qualcomm Snapdragon 8 Gen 2 chip, and boasts a 6.81-inch 2K variable refresh-rate curved screen, with the main, ultra-wide-angle, and 50 M pixel periscope telephoto cameras. Using NIO Link panoramic-interconnection technology, the NIO Phone integrates smoothly and seamlessly with smart EVs and NIO’s in-car system. With a single click, the driver can control over 30 functions, and equipped with ultra-wideband technology, it can completely replace traditional car keys.
To support such powerful and comprehensive features, the NIO Phone is equipped with a large 5,200 mAh battery and an in-box GaNFast charger offering up to 66 W of charging power. Measuring only 57 x 57 x 30 mm (97.5 cc), the NV6136 GaNFast power IC in a high-frequency quasi-resonant (HFQR) topology with loss-less current sensing and ultra-fast autonomous short-circuit protection, delivers power density of 1.03 W/cc.
Mr. Zhang Baozhou who is responsible for NIO’s mobile phone supply chain, stated, “NIO is dedicated to providing users with high-performance smart electric vehicles and ultimate user experience, creating a delightful lifestyle for our users.
The NIO Phone fulfills the expectations and needs of NIO users for a flagship smartphone, making their cars more intuitive and user-friendly. In launching NIO Phone, we are very pleased to collaborate with Navitas Semiconductor, industry leader in GaN to utilize the mature, cutting-edge GaNFast power ICs, allowing our users to experience a comprehensive, lightweight, and efficient charging experience.”
Mr. Wu Gongli, GM of R&D for TenPao, the manufacturing partner for the NIO Phone commented, “We are excited to work with Navitas to build this leading GaN charger for NIO users, marking an important milestone in TenPao’s development. Navitas’ GaNFast ICs deliver top power-density performance with easy-to-use features. The combination of high efficiency and fast design accelerates our time-to-market.”
Mr. Yingjie (Charles) Zha, VP and GM of Navitas China, stated, “Navitas is extremely honored to collaborate with TenPao to make the NIO Phone possible by integrating the leading GaNFast technology into the NIO Phone. Navitas’ mission to ‘Electrify Our World™’ aligns closely with NIO’s objective of ‘Blue Sky Coming’. This is just the beginning of our collaboration. In the future, Navitas will spare no effort to deeply-integrate energy-saving, sustainable, world-leading GaN and SiC technology into NIO Phone’s DNA, creating a comprehensive lifestyle revolution from a smartphone to EVs.”
Original – Navitas Semiconductor
-
GaN / LATEST NEWS / SiC / WBG2 Min Read
Navitas Semiconductor secured the 49th position on Forbes’ 2024 America’s Successful Small Companies list. The ranking is recognition of the company’s growth based on strong demand for Navitas’ advanced, high-efficiency, wide bandgap (WBG) GaN and SiC power components, across growing and diverse global markets and an expanding customer base.
Forbes evaluated Navitas on earnings growth, sales growth, return on equity, and total stock return over the preceding five years, with a specific focus on the last 12 months, including Navitas’ 115% increase in revenue (Q3’22 to Q3’23).
Looking ahead, Navitas will host an in-person 2023 Investor Day at the company’s new Torrance HQ (with livestream), from 12:30 pm Pacific / 3:30 pm US Eastern on Tuesday 12th December. Highlights include a deep dive into four major new GaN/SiC technology platforms and focus markets, plus customer testimonials and a refresh on the $1B+ customer pipeline, plus 2024 and long-term financial outlook.
“The top 50 ranking is great recognition by Forbes for Navitas’ growth,” said Gene Sheridan, co-founder and CEO. “GaN and SiC are accelerating the transition away from fossil fuels to ‘Electrify Our World™’ with renewable sources and efficient uses of electricity. This disruptive, displacement technology upgrades from legacy silicon chips, to make existing applications more efficient, lighter, faster charging and longer range, with lower system costs.”
Original – Navitas Semiconductor
-
GaN / LATEST NEWS / PROJECTS / WBG3 Min Read
Efficient Energy Technology GmbH (EET), the Austrian-based pioneer in designing and producing innovative balcony power plants, has selected Efficient Power Conversion Corporation’s (EPC) EPC2204 enhancement-mode gallium nitride (eGaN®) power transistor for its latest SolMate® green solar balcony product.
The EPC2204 strikes an optimal compromise between low RDS(on) and low COSS, critical for demanding hard switching application, while featuring a drain-source breakdown voltage of 100 V in a compact package. This compact design significantly reduces PCB size, keeps current loops small, and minimizes electromagnetic interference (EMI) emissions.
EET has realized multiple benefits following the integration of GaN in its SolMate MPPT charging converter. Efficiency loss has been halved, increasing overall efficiency from 96% to 98%. The converter’s volume has decreased by 70%, the BOM and manufacturing costs have been reduced by 20%, all while lowering cooling requirements. Additionally, the increased switching frequency by a factor of 10 eliminates the need for error-prone electrolytic capacitors, thus increasing the converter’s lifespan.
By reducing power loss, EET’s system can more efficiently convert solar energy, allowing the company to generate several megawatts of additional green solar power that would otherwise dissipate as heat on a large scale. The reduced cooling requirements are particularly significant in scenarios without access to fresh air, where a water-resistant case is employed.
EET’s SolMate has won many awards for its technical innovation, for the high technical standards and the innovative design, including the James Dyson Award, Living Standards Austria, the German Sustainability Award (Design), the SolarPower Summit Award, and a finalist in the Intersolar EES Award.
Commenting on the development, Jan Senn, CMO & Sales at EET stated, “Our vision is to make renewable energy simple, safe and reliable for everyone. We accomplish this by enabling individuals to use green energy where it is most crucial – in their own homes.
SolMate combines the highest quality, excellent user experience, and design into one user-friendly lifestyle product for every home. Transitioning to GaN helps us realize this vision, and we are currently exploring the integration of GaN transistors from EPC in other power converters as well.”
Stefan Werkstetter, VP of EMEA Sales at EPC, stated, “We are delighted that EET has chosen our EPC2204 eGaN FET for their SolMate green solar balcony product. Our commitment to delivering high-performance and efficient power conversion solutions aligns perfectly with EET’s mission to make renewable energy accessible and reliable for all. We look forward to continuing our partnership with EET and contributing to the advancement of sustainable energy solutions.”
Original – Efficient Power Conversion