• EPC Introduces Three Evaluation Boards

    EPC Introduces Three Evaluation Boards

    2 Min Read

    EPC introduces three evaluation boards – EPC9179, EPC9181, and EPC9180 – featuring pulse current laser drivers of  75 A, 125 A, and 231 A , showcasing EPC’s AEC-Q101 GaN FETs. These FETs; EPC2252, EPC2204A, and EPC2218A are 30% smaller and more cost-effective than their predecessors. Designed for both long and short-range automotive lidar systems, these boards expedite solution evaluation with varied input and output options.

    All boards share identical functionality, differing only in peak current and pulse width. Utilizing a resonant discharge power stage, they employ a ground-referenced GaN FET driven by LMG1020 gate driver. The GaN FET’s ultrafast switching enables rapid discharge of a charged capacitor through the load’s stray inductance, enabling peak discharge currents of tens to hundreds of amps within nanoseconds.

    The printed circuit board is designed to minimize power loops and common source inductance while offering mounting flexibility for laser diodes or alternative loads. To enhance user-friendliness, all boards ship with EPC9989 interposer PCBs, featuring various footprints to accommodate a variety of laser diodes or other loads. Customers can choose one that meets their needs to evaluate the GaN solutions.

    The EPC9179/81/80 boards are designed to be triggered from 3.3V logic or differential logic signals such as LVDS. For single-ended inputs, the boards can operate with input voltages down to 2.5 V or 1.8 V with a simple modification. Designing an automotive lidar system is complex, and finding a reliable solution is challenging. The purpose of these evaluation boards is to simplify the evaluation of powerful GaN-based lidar drivers that switch faster and deliver higher pulse current than other semiconductor solutions. For technical details, EPC offers full schematics, bill of materials (BOM), PCB layout files, and a quick start guide on EPC’s website.

    “To meet the growing demand for automotive lidar, these cost-effective boards, featuring our latest AEC products, streamline evaluation, reducing time-to-market with exceptional switching performance,” said Alex Lidow, CEO, and co-founder of EPC.

    Original – EPC

    Comments Off on EPC Introduces Three Evaluation Boards
  • Teledyne e2v HiRel Adds New Space Screened Versions of 100V90A and 650V30A GaN HEMTs

    Teledyne e2v HiRel Adds New Space Screened Versions of 100V/90A and 650V/30A GaN HEMTs

    2 Min Read

    Teledyne e2v HiRel announced the addition of new space screened versions of its popular 100 V, 90 A and 650 V, 30 A high reliability gallium nitride high electron mobility transistors (GaN HEMTs). 

    • TDG650E30BSP
    • TDG100E90BSP
    • TDG100E90TSP

    The new parts go through NASA Level 1 or ESA Class 1 screening flow and can be brought up to full Level 1 conformance with extra qualification testing if desired. Typical applications include battery management, dc-dc converters, and space motor drives.

    Two new 100 V parts are available with both bottom-side and top-side cooled packaging. One new 650 V 30 A GaN-on-Silicon power transistor is available in a bottom-side cooled package. Each device is available with options for EAR99 or European sourcing.

    Teledyne e2v HiRel’s GaN HEMTs feature single wafer lot traceability, extended temperature performance from -55 to +125°C, and low inductance, low thermal resistance packaging. 

    “Our customers have embraced the previous release of 650 V space screened devices, and we have expanded our portfolio to provide additional options. These GaN HEMT products save customers time and money by providing standard devices without the need for additional screening.” said Mont Taylor, VP of Business Development for Teledyne e2v HiRel. “Our expanded catalog with standard burn-in make it easy for designers to utilize the latest in GaN in their designs.”

    Gallium nitride devices have revolutionized power conversion in other industries and are now available in radiation tolerant, plastic encapsulated options that have undergone stringent reliability and electrical testing to help ensure mission critical success. The release of these new GaN HEMTs delivers to customers the efficiency, size, and power-density benefits required in critical aerospace and defense power applications.

    Original – Teledyne e2v HiRel

    Comments Off on Teledyne e2v HiRel Adds New Space Screened Versions of 100V/90A and 650V/30A GaN HEMTs
  • Aehr Test Systems Received Order for a FOX-NP™ Wafer Level Test and Burn-in System and a FOX WaferPak™ Aligner to be Used for GaN Power Devices

    Aehr Test Systems Received Order for a FOX-NP™ Wafer Level Test and Burn-in System and a FOX WaferPak™ Aligner to be Used for GaN Power Devices

    4 Min Read

    Aehr Test Systems announced it has received an initial customer order for a FOX-NP™ wafer level test and burn-in system and a FOX WaferPak™ Aligner to be used for gallium nitride (GaN) power devices. The customer is a leading global supplier of semiconductor devices used in electric vehicles and power infrastructure and adds another major customer to the list of companies using Aehr’s FOX products for wafer level test and burn-in of wide bandgap compound semiconductors. The FOX-NP system, including the FOX WaferPak Aligner, is scheduled to ship and be installed in the current fiscal quarter. 

    As Aehr’s first gallium nitride customer to order a system, this company selected Aehr due in part to its unique ability to offer a total solution that allows customers to apply thermal and electrical stress conditions to thousands of devices while still in wafer form. Aehr’s cutting-edge technology provides critical geolocation information across the wafer while inducing the extrinsic (early life) failures that would otherwise fail in the field without reducing the long-term reliability or life of the good devices.

    Gayn Erickson, President and CEO of Aehr Test Systems, commented, “After seeing the positive results from their long and extensive evaluation of our FOX wafer level test systems for their silicon carbide devices, this customer decided to first move forward with our FOX-NP system to test their gallium nitride devices’ long-term reliability failure rates, as well as qualify the production extrinsic failure screening process for their devices in applications where safety, reliability, and/or security are critical.

    A key consideration behind their decision is that the FOX-NP system is 100% compatible with the Aehr FOX-XP system that is targeted for high volume production and can support all the test modes needed for both gallium nitride and silicon carbide device testing and burn-in, including high-voltage testing of up to 2,000 volts with full wafer test without electrical arcing that can damage the wafer, which is a distinct advantage of our unique patented technology.

    “Similar to silicon carbide, gallium nitride semiconductor MOSFETs are considered wide bandgap devices with much higher efficiencies in terms of power conversion than silicon, with gallium nitride being particularly good for lower power devices such as under 1000 watt power converters used in consumer devices such as cell phones, tablets, and laptop computers, as well as being targeted for automotive power converters for all the electrical systems in automobiles, whether electric vehicles or traditional gasoline automobiles. Gallium nitride MOSFETs are also believed by many industry analysts and technical communities to likely take over silicon as the power converter of choice for photovoltaic (solar panel) applications.

    “Gallium nitride and silicon carbide devices both have excellent long-term intrinsic reliability, making them very good for automotive and industrial applications. But both also experience higher than acceptable early life or extrinsic failures related to the material and processing steps. Gallium nitride and silicon carbide semiconductor suppliers can add a special stress or screening test known as burn-in on 100% of the devices to identify and remove these early life failures so that they can meet the end customers’ target reliability needs. This 100% burn-in requirement is not unique to these devices, as it is also the case with microprocessors and microcontrollers, dynamic random-access memories (DRAM), flash non-volatile memories, as well as many sensors used in automotive and other industrial applications.”

    Aehr enables its customers to cost-effectively implement the needed testing and qualification process for semiconductor devices that experience early life failures by not only applying the electrical stress condition to every device on the wafer but by also testing up to 18 wafers at a time using the FOX-XP production test and burn in system. These electrical tests are done with up to thousands of precise calibrated electrical source and measurement instruments per wafer. These tests are done while maintaining the temperature at an accurately programmed thermal temperature across each of the wafers using a direct conduction thermal transfer via a proprietary patented precision thermal chuck per wafer.

    The FOX-NP compliments Aehr’s production FOX-XP system by using the exact same test ‘Blades’ that are in the FOX-XP to allow 100% correlation between the results on the FOX-NP to the FOX-XP. 

    The FOX-XP and FOX-NP systems, available with multiple WaferPak Contactors (full wafer test) or multiple DiePakTM Carriers (singulated die/module test) configurations, are capable of functional test and burn-in/cycling of devices such as silicon carbide and gallium nitride power semiconductors, silicon photonics as well as other optical devices, 2D and 3D sensors, flash memories, magnetic sensors, microcontrollers, and other leading-edge ICs in either wafer form factor, before they are assembled into single or multi-die stacked packages, or in singulated die or module form factor.

    Original – Aehr Test Systems

    Comments Off on Aehr Test Systems Received Order for a FOX-NP™ Wafer Level Test and Burn-in System and a FOX WaferPak™ Aligner to be Used for GaN Power Devices
  • Nexperia Releases GaN FETs in Proprietary Copper-Clip CCPAK Surface Mount Packaging

    Nexperia Releases GaN FETs in Proprietary Copper-Clip CCPAK Surface Mount Packaging

    3 Min Read

    Nexperia announced that its GaN FET devices, featuring next-gen high-voltage GaN HEMT technology in proprietary copper-clip CCPAK surface mount packaging, are now available to designers of industrial and renewable energy applications.

    Building on two decades of expertise in supplying high-volume, high-quality copper-clip SMD packaging, Nexperia is now proud to extend its revolutionary packaging approach to GaN cascode switches in CCPAK. The GAN039-650NTB, a 33 mΩ (typ.) Gallium Nitride (GaN) FET within the CCPAK1212i top-side cooling package, ushers in a new era of wide bandgap semiconductors and copper-clip packaging.

    This technology offers advantages for renewable energy applications such as solar and residential heat pumps, further enhancing Nexperia’s commitment to developing the latest component technology for sustainable applications. It is also suited to a wide spectrum of industrial applications such as servo drives, switched-mode power supplies (SMPS), server, and telecom.

    Nexperia’s CCPAK surface mount packaging uses Nexperia’s proven innovative copper-clip package technology to replace internal bond wires. This reduces parasitic losses, optimizes electrical and thermal performance, and improves device reliability. For maximum flexibility in designs, these CCPAK GaN FETs are available in top- or bottom-cooled configurations to further improve heat dissipation.

    The cascode configuration of the GAN039-650NTB enables it to deliver superior switching and on-state performance, with a robust gate offering high margins against noise.  This feature also simplifies application designs by eliminating the requirement for complex gate drivers and control circuitry, instead allowing them to be conveniently driven using standard silicon MOSFET drivers.

    Nexperia’s GaN technology improves switching stability and helps to shrink die size by approximately 24%. In addition, device RDS(on) is reduced to only 33 mΩ (typ.) at 25°C, with  a high threshold voltage and low diode forward voltage.

    “Nexperia recognizes that designers of industrial and renewable energy equipment need a highly robust switching solution that can provide excellent thermal efficiency when performing power conversion.”, according to Carlos Castro, Vice President and General Manager of the GaN FET business at Nexperia. “This is why Nexperia decided to bring together the exceptional switching performance of its cascode GaN FETs with the exceptional thermal properties of its CCPAK packaging to offer customers a compelling solution.”

    Nexperia begins its CCPAK portfolio release with the top-cooled 33 mΩ (typ.), 650 V GAN039-650NTB, and will follow shortly with the bottom-cooled variant, GAN039-650NBB of the same RDS(on). More information including datasheets and samples is available at www.nexperia.com/ccpak.

    Original – Nexperia

    Comments Off on Nexperia Releases GaN FETs in Proprietary Copper-Clip CCPAK Surface Mount Packaging
  • NIO Released a Phone with 66 W Fast Charger powered by Navitas GaNFast™

    NIO Released a Phone with 66 W Fast Charger Powered by Navitas GaNFast™

    3 Min Read

    Navitas Semiconductor announced that NIO, a global, leading, new-energy vehicle maker has released its inaugural smartphone, the NIO Phone with a powerful 66 W fast charger featuring Navitas’ next-generation gallium-nitride (GaN) GaNFast™ power ICs equipped with GaNSense™ technology. This enhancement delivers flagship-level charging efficiency, providing end users with a better vehicle-centric mobile interconnection experience. New GaNFast ICs are replacing legacy silicon chips to enable next-gen fast-charging for mobile phones, tablets and laptops.

    The flagship NIO Phone features the leading Qualcomm Snapdragon 8 Gen 2 chip, and boasts a 6.81-inch 2K variable refresh-rate curved screen, with the main, ultra-wide-angle, and 50 M pixel periscope telephoto cameras. Using NIO Link panoramic-interconnection technology, the NIO Phone integrates smoothly and seamlessly with smart EVs and NIO’s in-car system. With a single click, the driver can control over 30 functions, and equipped with ultra-wideband technology, it can completely replace traditional car keys.

    To support such powerful and comprehensive features, the NIO Phone is equipped with a large 5,200 mAh battery and an in-box GaNFast charger offering up to 66 W of charging power. Measuring only 57 x 57 x 30 mm (97.5 cc), the NV6136 GaNFast power IC in a high-frequency quasi-resonant (HFQR) topology with loss-less current sensing and ultra-fast autonomous short-circuit protection, delivers power density of 1.03 W/cc.

    Mr. Zhang Baozhou who is responsible for NIO’s mobile phone supply chain, stated, “NIO is dedicated to providing users with high-performance smart electric vehicles and ultimate user experience, creating a delightful lifestyle for our users.

    The NIO Phone fulfills the expectations and needs of NIO users for a flagship smartphone, making their cars more intuitive and user-friendly. In launching NIO Phone, we are very pleased to collaborate with Navitas Semiconductor, industry leader in GaN to utilize the mature, cutting-edge GaNFast power ICs, allowing our users to experience a comprehensive, lightweight, and efficient charging experience.”

    Mr. Wu Gongli, GM of R&D for TenPao, the manufacturing partner for the NIO Phone commented, “We are excited to work with Navitas to build this leading GaN charger for NIO users, marking an important milestone in TenPao’s development. Navitas’ GaNFast ICs deliver top power-density performance with easy-to-use features. The combination of high efficiency and fast design accelerates our time-to-market.”

    Mr. Yingjie (Charles) Zha, VP and GM of Navitas China, stated, “Navitas is extremely honored to collaborate with TenPao to make the NIO Phone possible by integrating the leading GaNFast technology into the NIO Phone. Navitas’ mission to ‘Electrify Our World™’ aligns closely with NIO’s objective of ‘Blue Sky Coming’. This is just the beginning of our collaboration. In the future, Navitas will spare no effort to deeply-integrate energy-saving, sustainable, world-leading GaN and SiC technology into NIO Phone’s DNA, creating a comprehensive lifestyle revolution from a smartphone to EVs.”

    Original – Navitas Semiconductor

    Comments Off on NIO Released a Phone with 66 W Fast Charger Powered by Navitas GaNFast™
  • Navitas Makes it to Forbes’ 2024 Top 50 America’s Successful Small Companies List

    Navitas Makes it to Forbes’ 2024 Top 50 America’s Successful Small Companies List

    2 Min Read

    Navitas Semiconductor secured the 49th position on Forbes’ 2024 America’s Successful Small Companies list. The ranking is recognition of the company’s growth based on strong demand for Navitas’ advanced, high-efficiency, wide bandgap (WBG) GaN and SiC power components, across growing and diverse global markets and an expanding customer base.

    Forbes evaluated Navitas on earnings growth, sales growth, return on equity, and total stock return over the preceding five years, with a specific focus on the last 12 months, including Navitas’ 115% increase in revenue (Q3’22 to Q3’23).

    Looking ahead, Navitas will host an in-person 2023 Investor Day at the company’s new Torrance HQ (with livestream), from 12:30 pm Pacific / 3:30 pm US Eastern on Tuesday 12th December. Highlights include a deep dive into four major new GaN/SiC technology platforms and focus markets, plus customer testimonials and a refresh on the $1B+ customer pipeline, plus 2024 and long-term financial outlook.

    “The top 50 ranking is great recognition by Forbes for Navitas’ growth,” said Gene Sheridan, co-founder and CEO. “GaN and SiC are accelerating the transition away from fossil fuels to ‘Electrify Our World™’ with renewable sources and efficient uses of electricity. This disruptive, displacement technology upgrades from legacy silicon chips, to make existing applications more efficient, lighter, faster charging and longer range, with lower system costs.”

    Original – Navitas Semiconductor

    Comments Off on Navitas Makes it to Forbes’ 2024 Top 50 America’s Successful Small Companies List
  • Efficient Energy Technology Selects EPC's EPC2204 eGaN for SolMate

    Efficient Energy Technology Selects EPC’s EPC2204 eGaN for SolMate

    3 Min Read

    Efficient Energy Technology GmbH (EET), the Austrian-based pioneer in designing and producing innovative balcony power plants, has selected Efficient Power Conversion Corporation’s (EPC) EPC2204 enhancement-mode gallium nitride (eGaN®) power transistor for its latest SolMate® green solar balcony product.

    The EPC2204 strikes an optimal compromise between low RDS(on) and low COSS, critical for demanding hard switching application, while featuring a drain-source breakdown voltage of 100 V in a compact package. This compact design significantly reduces PCB size, keeps current loops small, and minimizes electromagnetic interference (EMI) emissions.

    EET has realized multiple benefits following the integration of GaN in its SolMate MPPT charging converter.  Efficiency loss has been halved, increasing overall efficiency from 96% to 98%.  The converter’s volume has decreased by 70%, the BOM and manufacturing costs have been reduced by 20%, all while lowering cooling requirements. Additionally, the increased switching frequency by a factor of 10 eliminates the need for error-prone electrolytic capacitors, thus increasing the converter’s lifespan.

    By reducing power loss, EET’s system can more efficiently convert solar energy, allowing the company to generate several megawatts of additional green solar power that would otherwise dissipate as heat on a large scale.  The reduced cooling requirements are particularly significant in scenarios without access to fresh air, where a water-resistant case is employed.

    EET’s SolMate has won many awards for its technical innovation, for the high technical standards and the innovative design, including the James Dyson Award, Living Standards Austria, the German Sustainability Award (Design), the SolarPower Summit Award, and a finalist in the Intersolar EES Award.

    Commenting on the development, Jan Senn, CMO & Sales at EET stated, “Our vision is to make renewable energy simple, safe and reliable for everyone. We accomplish this by enabling individuals to use green energy where it is most crucial – in their own homes.

    SolMate combines the highest quality, excellent user experience, and design into one user-friendly lifestyle product for every home. Transitioning to GaN helps us realize this vision, and we are currently exploring the integration of GaN transistors from EPC in other power converters as well.”

    Stefan Werkstetter, VP of EMEA Sales at EPC, stated, “We are delighted that EET has chosen our EPC2204 eGaN FET for their SolMate green solar balcony product. Our commitment to delivering high-performance and efficient power conversion solutions aligns perfectly with EET’s mission to make renewable energy accessible and reliable for all. We look forward to continuing our partnership with EET and contributing to the advancement of sustainable energy solutions.”

    Original – Efficient Power Conversion

    Comments Off on Efficient Energy Technology Selects EPC’s EPC2204 eGaN for SolMate
  • STMicroelectronics Extends MasterGaN Family

    STMicroelectronics Extends MasterGaN Family

    2 Min Read

    STMicroelectronics’ MasterGaN1L and MasterGaN4L introduce the next generation of integrated gallium-nitride (GaN) bridge devices that simplify power-supply design leveraging wide-bandgap technology to achieve the latest ecodesign targets.

    ST’s MasterGaN family combines 650V GaN high electron-mobility transistors (HEMT) with optimized gate drivers, system protection, and an integrated bootstrap diode that helps power the device at startup. Integrating these features saves designers tackling the complex gate-drive requirements of GaN transistors. Housed in a compact power package, the devices also enhance reliability, cut the bill of materials, and ease circuit layout.

    The latest devices contain two GaN HEMTs connected in half-bridge configuration. The arrangement is suitable for building switched-mode power supplies, adapters, and chargers with active-clamp flyback, active-clamp forward, and resonant converter topologies.

    The MasterGaN1L and MasterGaN4L are pin compatible with MasterGaN1 and MasterGaN4 respectively. Compared to the earlier devices, they have a newly optimized turn-on delay that allows working at higher frequency and higher efficiency with low load, especially in resonant topologies.

    The inputs accept signal voltages from 3.3V to 15V, with hysteresis and pull-down that facilitate connecting directly to a controlling device such as a microcontroller, DSP, or Hall-effect sensors. A dedicated shutdown pin helps designers save system power and the two GaN HEMTs have accurately matched timing with an interlocking circuit to prevent cross-conduction conditions.

    The MasterGaN1L HEMTs have 150mΩ RDS(on) and 10A rated current, for use in applications up to 500W. Consuming just 20mW no-load power, and enabling high conversion efficiency, they enable designers to meet stringent industry targets for standby power and average efficiency. The MasterGaN4L HEMTs target applications up to 200W, with 225mΩ RDS(on) and rated current of 6.5A.

    The EVLMG1LPBRDR1 and EVLMG4LPWRBR1 demonstration boards are available to help evaluate the features of each device. These boards contain a GaN-based half-bridge power module fine-tuned to work in an LLC application. They help quickly create new topologies leveraging the MasterGaN1L and MasterGaN4L devices without needing a complete PCB design.

    Original – STMicroelectronics

    Comments Off on STMicroelectronics Extends MasterGaN Family
  • Texas Instruments Expands Its GaN Portfolio

    Texas Instruments Expands Its GaN Portfolio

    3 Min Read

    Texas Instruments announced the expansion of its low-power gallium nitride (GaN) portfolio, designed to help improve power density, maximize system efficiency, and shrink the size of AC/DC consumer power electronics and industrial systems. TI’s overall portfolio of GaN field-effect transistors (FETs) with integrated gate drivers addresses common thermal design challenges, keeping adapters cooler while pushing more power in a smaller footprint.

    “Today’s consumers want smaller, lighter and more portable power adapters that also provide fast, energy-efficient charging,” said Kannan Soundarapandian, general manager of High Voltage Power at TI.

    “With the expansion of our portfolio, designers can bring the power-density benefits of low-power GaN technology to more applications that consumers use every day, such as mobile phone and laptop adapters, TV power-supply units, and USB wall outlets. Additionally, TI’s portfolio also addresses the growing demand for high efficiency and compact designs in industrial systems such as power tools and server auxiliary power supplies.”

    The new portfolio of GaN FETs with integrated gate drivers, which includes the LMG3622LMG3624 and LMG3626, offers the industry’s most accurate integrated current sensing. This functionality helps designers achieve maximum efficiency by eliminating the need for an external shunt resistor and reducing associated power losses by as much as 94% when compared to traditional current-sensing circuits used with discrete GaN and silicon FETs.

    TI’s GaN FETs with integrated gate drivers enable faster switching speeds, which helps keep adapters from overheating. Designers can reach up to 94% system efficiency for <75-W AC/DC applications or above 95% system efficiency for >75-W AC/DC applications. The new devices help designers reduce the solution size of a typical 67-W power adapter by as much as 50% compared to silicon-based solutions.

    The portfolio is also optimized for the most common topologies in AC/DC power conversion, such as quasi-resonant flyback, asymmetrical half bridge flyback, inductor-inductor-converter, totem-pole power factor correction and active clamp flyback.

    To learn more about the benefits of TI GaN for the most common AC/DC topologies, read the technical article, “The benefits of low-power GaN in common AC/DC power topologies.”

    TI has a long history of globally owned, regionally diverse internal manufacturing operations, including wafer fabs, assembly and test factories, and bump and probe facilities across 15 worldwide sites. TI has been investing in manufacturing GaN technology for more than 10 years.

    With plans to manufacture more than 90% of its products internally by 2030, TI has the ability to provide customers with dependable capacity for decades to come.

    Original – Texas Instruments

    Comments Off on Texas Instruments Expands Its GaN Portfolio
  • GaN Systems Cup Winners Announced

    GaN Systems Cup Winners Announced

    2 Min Read

    GaN Systems™, an Infineon Technologies Company, announced the winners for the 9th “GaN Systems Cup” Power Electronics Application Design Competition at the 2023 China Power Electronics and Energy Conversion Congress and the 26th China Power Supply Society Annual Conference & Exhibition (CPEEC & CPSSC 2023), taking place on November 10-13, 2023, in Guangzhou, China. The Xi’an Jiaotong University team’s three-phase inverter prototype design was recognized as the Grand Prize for achieving outstanding efficiency and power density with GaN Systems’ high-performance power transistors.

    Since 2015, the Power Electronics Application Design Competition has encouraged over a thousand college students to sharpen their knowledge with practical design experience and explore possibilities in power electronics.

    Participation was again unprecedented this year, with 68 teams from 48 top universities submitting project proposals. Out of the 24 teams that entered finals, 10 eventually received recognition. The Xi’an Jiaotong University team earned the Grand Prizes for their outstanding high-efficiency, high-power density three-phase inverter design. With an output power of 500W, an input voltage of 350VDC, and an output voltage of 220VAC with frequency increased from 50Hz to 400Hz and eventually 2000Hz, the team’s design delivered an impressive 15W/in3 power density and average 98% efficiency.

    “The power industry is constantly looking for novel approaches to create more powerful, smaller, and faster components that increase overall system power density and efficiency,” said Yunsheng Qu, Senior Manager of Infineon’s Power and Sensor Systems Division, at the award ceremony. “GaN adoption is now at the tipping point in many applications, and developing a pipeline of skilled, talented engineers has become ever-crucial to support such massive market growth potential. I am pleased to see many of the winning entries not only meet the design requirements but go well beyond them.”

    Co-located with the GaN Systems Cup, CPEEC & CPSSC 2023 drew a record-breaking 2,600 visitors and nearly 100 exhibitors, making it China’s largest academic event in power electronics. Infineon’s GaN Systems business line showcased an array of groundbreaking power system reference designs for automotive, industrial, and consumer applications. The impressively compact and economical 11kW 800V GaN-based onboard charger reference design was the main attraction in the booth. Visitors also showed a high level of interest in the implementation benefits enabled by the new Gen4 platform and responded positively to the closing of the Infineon acquisition.

    Original – GaN Systems

    Comments Off on GaN Systems Cup Winners Announced