-
LATEST NEWS2 Min Read
Infineon Technologies AG and Eve Energy Co., Ltd., a manufacturer of lithium batteries, have signed a memorandum of understanding (MoU). The two companies aim at enabling comprehensive battery management system solutions for the automotive market.
As part of the MoU, Infineon will supply a complete chipset, including microcontroller units, balancing and monitoring ICs, power management ICs, drivers, MOSFETs, controller area networks and sensor products. Equipped with these solutions, EVE Energy’s battery management system can provide high safety, high reliability and optimized cost. It also enables more accurate monitoring, protection and optimization of electric vehicle battery performance and improves driving experience and energy efficiency.
“The rapid growth in electrification has driven the need for advanced battery solutions. The partnership between Infineon’s advanced battery management ICs and EVE Energy`s advanced battery technologies will pave the way for the next generation of intelligent battery packs,” said Andreas Doll, Senior Vice President and General Manager Smart Power at Infineon. “Infineon offers a comprehensive and advanced system-level solution that meets the diverse needs of customers. We believe that further cooperation between the two sides will foster positive interaction and collaborative development at various levels.”
“EVE Energy has experienced rapid growth in the field of battery management systems in recent years, and we are determined to continue this development. Therefore, we highly value the partnership with Infineon,” said Liu Jianhua, co-founder and president of EVE Energy. “Our goal is to jointly introduce more advanced solutions to the market that meet customers’ needs and drive the development of reliable and efficient systems.”
Original – Infineon Technologies
-
LATEST NEWS / PRODUCT & TECHNOLOGY / Si3 Min Read
Nexperia announced the launch of 16 new 80 V and 100 V power MOSFETs in the innovative copper-clip CCPAK1212 package, delivering industry-leading power density and outright performance. The innovative copper-clip design provides high current conduction, reduced parasitic inductance, and excellent thermal performance. These features make the devices ideal for motor control, power supplies, renewable energy systems, and other power-hungry applications.
The range also includes application-specific MOSFETs (ASFETs) designed for AI server hot-swap functions. With top-side and bottom-side cooling options, these MOSFETs in CCPAK provide high power density and reliable solutions. All devices are supported by JEDEC registration and Nexperia’s interactive datasheets for seamless integration.
The benchmark PSMN1R0-100ASF is a 0.99 mΩ 100 V power MOSFET capable of conducting 460 A and dissipating 1.55 KW of power, yet in a CCPAK1212 package footprint that occupies only 12mm x 12mm of board space. The PSMN1R0-100CSF offers similar statistics in a top-side cooled version.
The secret to this impressive performance is the internal construction of the devices. The “CC” in CCPAK1212 stands for copper clip, meaning that the power MOSFET silicon die is sandwiched between two pieces of copper, the drain tab on one side and the source clip on the other. With wire bonds entirely eliminated, such an optimized assembly offers a low on-resistance, reduced parasitic inductances, high maximum current ratings and excellent thermal performance.
CCPAK1212 NextPower 80/100 V MOSFETs are recommended for power-hungry industrial applications where high efficiency and high reliability are critical, including brushless DC (BLDC) motor control, switched-mode power supplies (SMPS), battery management systems (BMS) and renewable energy storage. The availability of such power-capable MOSFETs in a single package reduces the need for parallelism, simplifying designs and offering more compact, cost-effective solutions.
The Nexperia CCPAK1212 announcement also includes some new application specific MOSFETs (ASFETs) targeting the hot-swap function in increasingly powerful AI servers. These devices feature an enhanced safe operating area (SOA), providing superior thermal stability during linear mode transitions.
Across all these applications, the availability of top-side and bottom-side cooling options provides engineers a choice of thermal extraction techniques, especially helpful where dissipating heat through the PCB is impractical due to the sensitivity of other components.
“Despite offering market-leading performance, we know that some customers will be reticent to design-in a relatively new package”, stated Chris Boyce, Product Group General Manager at Nexperia. “For this reason, we have registered the CCPAK1212 with the JEDEC standards organization (reference MO-359). We followed a similar approach when we introduced the first LFPAK MOSFET package some years ago and as a result there are now many compatible devices available in the market. You are never on your own for long when your innovations offer genuine value to your customers”, concluded Boyce.
All the new CCPAK1212 MOSFET devices are supported with a range of advanced design-in tools, including thermally compensated simulation models. Traditional PDF datasheets are supplemented with Nexperia’s user-friendly interactive datasheets, which now incorporate a new “graph-to-csv” feature that allows engineers to download, analyze and interpret the data behind each device’s key characteristics. This not only streamlines the design process but enhances confidence in design choices.
Nexperia plans to extend CCPAK1212 packaging to power MOSFETs across all voltage ranges and also to its automotive qualified AEC-Q101 portfolios, addressing the evolving demands of next-generation systems with the highest current and thermal performance requirements.
Original – Nexperia
-
LATEST NEWS / PRODUCT & TECHNOLOGY2 Min Read
DISCO Corporation has announced a comprehensive series of initiatives aimed at advancing both its environmental goals and technological innovations. As a leader in precision cutting and grinding technologies, the company continues to shape the future of semiconductor manufacturing with a dual focus on sustainability and cutting-edge product development.
The company has intensified its focus on environmental, social, and governance (ESG) strategies, introducing initiatives designed to enhance operational sustainability. By optimizing energy usage and reducing emissions, DISCO aims to minimize its environmental footprint while supporting global efforts toward decarbonization. These measures also include resource-efficient manufacturing processes that align with DISCO’s long-term vision for sustainable growth.
As part of its product lineup expansion, DISCO introduced the ZHSC25 and Z25 dicing blades. Specifically engineered for advanced applications, these tools represent significant advancements in semiconductor processing. The ZHSC25 blade is tailored for high-performance dicing of SiC wafers, a critical material in power electronics due to its superior heat resistance and efficiency. Meanwhile, the Z25 blade is optimized for a broad range of electronic components, offering manufacturers unprecedented processing speed and accuracy. These innovations demonstrate DISCO’s dedication to addressing evolving industry demands.
DISCO’s recent initiatives reflect a holistic approach to industry leadership, combining a commitment to ESG principles with groundbreaking innovation. By aligning technological advancements with sustainability objectives, the company aims to contribute to both the semiconductor industry’s growth and global sustainability efforts.
With these strategic updates, DISCO Corporation continues to exemplify its vision of harmonizing technology and sustainability to address the challenges and opportunities of a rapidly evolving global market.
The company plans to present its new offerings at SEMICON Japan 2024, one of the largest events in the semiconductor industry. This platform will enable DISCO to highlight the impact of its latest technologies and sustainability measures, reinforcing its role as an industry pioneer. Visitors to the exhibit will gain insights into how these developments are poised to enhance efficiency and quality in semiconductor manufacturing.
Original – DISCO
-
LATEST NEWS3 Min Read
Navitas Semiconductor will showcase several breakthroughs for AI data centers, EVs, and mobile technology at CES 2025 (Tech West, Venetian suite 29-335, January 7th – 10th).
The “Planet Navitas” suite will showcase the company’s mission to ‘Electrify our World™’ by advancing the transition from legacy silicon to next-generation, clean energy, GaN and SiC power semiconductors. These technologies are designed for high growth markets that demand the highest efficiency and power density, such as AI data centers, electric vehicles (EVs), and mobile. Additionally, Navitas will demonstrate how GaN and SiC technologies contribute to reducing carbon-footprint, with the potential to save over 6,000 megatons of CO2 per year by 2050.
Major technology and system breakthroughs include:
- World’s only 650V bi-directional GaNFast™ power ICs: Game-changing, disruptive GaN technology for next-generation solutions that require the highest efficiency and power density, with the lowest complexity, and significant component reduction.
- World’s First 8.5 kW AI Data Center Power Supply: See the world’s first 8.5 kW OCP power solution achieving 98% efficiency for AI and hyperscale data centers. Featuring high-power GaNSafe™ power ICs and Gen-3 Fast SiC MOSFETs in 3-Phase Interleaved CCM Totem-Pole PFC and 3-Phase LLC topologies to provide the highest efficiency, performance, and lowest component count.
- World’s Highest Power Density AI Power Supply: Navitas delivers efficient 4.5 kW power in the smallest power-supply form-factor for the latest AI GPUs that demand 3x more power per rack. The optimized design uses high-power GaNSafe ICs and Gen-3 Fast SiC MOSFETs enabling the world’s highest power density with 137 W/in3 and over 97% efficiency.
- ‘IntelliWeave’ Patented Digital Control Optimized for AI Data Center Power Supplies: Combined with high-power GaNSafe™ and Gen-3 ‘Fast’ SiC MOSFETs to enable PFC peak efficiencies of 99.3% and reduce power losses by 30% compared to existing solutions.
- Automotive Qualified (AEC-Q101) Gen-3 Fast SiC MOSFETs with ‘trench-assisted planar’ technology: Enabled by over 20 years of SiC innovation leadership, GeneSiC™ technology leads on performance with the Gen-3 ‘Fast’ SiC MOSFETs with ‘trench-assisted planar’ technology. This proprietary technology provides world-leading performance over temperature, delivering cool-running, fast-switching, and superior robustness to support faster charging EVs and up to 3x more powerful AI data centers.
- GaNSlim™: Simple. Fast. Integrated: A new generation of highly-integrated GaN power ICs that will further simplify and speed the development of small form factor, high-power-density applications by offering the highest level of integration and thermal performance. Target applications include chargers for mobile devices and laptops, TV power supplies, and lighting systems of up to 500W.
- SiCPAK™ High-Power Modules – Built for Endurance and Performance: Utilizing industry-leading ‘trench-assisted planar’-gate technology and epoxy-resin potting for increased power cycling and long-lasting reliability, SiCPAK modules offer compact form factors and provide cost-effective, power-dense solutions for applications including EV charging, drives, solar, and energy storage systems (ESS).
- New Advancements in our Leading GaNFast & GeneSiC technology:
- GaNSense™ motor drive ICs with bi-directional loss-less current sensing, voltage sensing, and temperature protection, further enhancing performance and robustness beyond what is achievable by any discrete GaN or discrete silicon device.
- GeneSiC MOSFET die specifically optimized for EV traction modules with additional screening and gold metallization for sintering.
- Sustainable Solutions: Discover Navitas’ vision to reduce up to 6 Gtons/year of CO₂ by 2050 with technologies that offer higher efficiency, density, and grid independence.
CES 2025 takes place in Las Vegas, NV from January 7th – 10th. The “Planet Navitas” suite is located in Tech West at the Venetian, suite 29-335.
Original – Navitas Semiconductor
-
LATEST NEWS / SiC / WBG3 Min Read
ROHM has announced the adoption of its EcoSiC™ products, including SiC MOSFETs and SiC Schottky barrier diodes (SBDs) in the HFA/HCA series of 3.5kW output AC-DC power supply units for 3-phase applications from COSEL, a leading power supply manufacturer in Japan. Incorporating ROHM SiC MOSFETs and SiC SBDs into the forced air-cooled HFA series and conduction-cooled HCA series achieves up to 94% efficiency. The HCA series has been mass produced since 2023, while the HFA series began mass production in 2024.
Many industrial applications that handle high power in the industrial sector, including MRI machines and CO2 lasers, require 3-phase power supplies that differ from the single-phase power supplies used in households. COSEL’s AC-DC power supply units – equipped with ROHM’s EcoSiC™ technology that excels in high-temperature, high-frequency, high-voltage environments – are compatible with 3-phase power supplies from 200VAC to 480VAC, contributing to improved power supply efficiency across a wide range of industrial equipment worldwide.
Jun Uchida, General Manager, New Product Development Dept. 2, COSEL Co., Ltd.
“The HFA/HCA series achieve high efficiency despite delivering a high-power output of 3.5kW by incorporating ROHM’s low-loss SiC power devices. Operating at high input voltages typically poses a challenge in reducing losses in high-voltage power devices, but using SiC power devices translates to significantly lower losses compared to conventional solutions, resulting in power supplies that maintains high efficiency and power density even under demanding high-power conditions.”
Akihiro Hikasa, Group General Manager, Power Devices Business Unit, SiC Business Section, ROHM Co., Ltd.
“We are delighted to support COSEL, an industry leader in power supply systems, by providing SiC power devices. A leading company in SiC power devices, ROHM also provides comprehensive power solutions that combine peripheral components. In addition, by addressing customer issues, we also improve device performance by incorporating the insights gained into our products. Going forward, we will continue to collaborate with COSEL to contribute to a sustainable society by enhancing the efficiency of industrial equipment that handle large amounts of power.”
The HFA/HCA series are 3.5kW power supplies featuring a wide input range (200VAC to 480VAC) that meets global power supply requirements. This allows them to be used anywhere in the world without the need to modify the power supply for each region, contributing to the standardization of application designs. Both forced air-cooled (HFA series) and conduction-cooled (HCA series) models – selectable based on operating environment – are available in 48V and 65V output voltage variants that can be used as power sources for a variety of high-power applications such as laser generation and MRI.
Original – ROHM
-
LATEST NEWS / PROJECTS3 Min Read
GlobalFoundries has received an additional $9.5 million in federal funding from the U.S. government to advance the manufacturing of GF’s essential gallium nitride (GaN) on silicon semiconductors at its facility in Essex Junction, Vermont.
The funding moves GF closer to large-scale production of GaN chips. With the ability to handle high voltages and temperatures, GaN chip technology is essential for enabling higher performance and greater energy efficiency across a range of RF and high-power control applications including automobiles, datacenter, IoT, aerospace and defense.
With the award, GF will continue to add new tools, equipment and prototyping capabilities to its market-leading GaN IP portfolio and reliability testing as the company moves closer to full-scale manufacturing of its 200mm GaN chips in Vermont. GF is committed to creating a fast and efficient path for customers to realize new innovative designs and products that leverage the unique efficiency and power management benefits of GaN chip technology.
“GF is proud of its leadership in GaN chip technology, which is positioned to make game-changing advances across multiple end-markets and enable new generations of devices with more energy-efficient RF performance and faster-charging, longer-lasting batteries,” said Nicholas Sergeant, vice president of IoT and aerospace and defense at GF. “We appreciate the U.S. government’s partnership and ongoing support of our GaN program. Realizing full-scale GaN chip manufacturing will be a catalyst for innovation, for both our commercial and government partners, and will add resilience and strengthen the semiconductor supply chain.”
The new funding, awarded by the U.S. Department of Defense’s Trusted Access Program Office (TAPO), represents the latest federal investment to support GF’s GaN program in Vermont.
“This strategic investment in critical technologies strengthens our domestic ecosystem and national security, and ensures these assets are readily available and secure for DoD utilization. In concert with key partners, this approach fortifies defense systems, empowering resilience and responsiveness,” said Dr. Nicholas Martin, Director at Defense Microelectronics Activity.
In total, including the new award, GF has received more than $80 million since 2020 from the U.S. government to support research, development and advancements to pave the way to full-scale GaN chip manufacturing.
Vermont is a U.S.-accredited Trusted Foundry and the global hub of GF’s GaN program, with longstanding leadership in 200mm semiconductor manufacturing. In July 2024, GF acquired Tagore Technology’s Gallium Nitride Power portfolio and created the GF Kolkata Power Center in Kolkata, India. The center is closely aligned with and supports GF’s facility in Vermont, and is helping advance GF’s research, development and leadership in GaN chip manufacturing.
Original – GlobalFoundries