-
LATEST NEWS2 Min Read
Axcelis Technologies, Inc. will be a top-level Platinum Sponsor at the International Conference on Ion Implantation Technology 2024 (IIT 2024) taking place September 23-26 at the Toyama International Conference Center in Japan.
IIT 2024 is the 24th Conference in the biennial series focused on the major challenges in current and emerging technologies related to implant/doping and annealing processes, device applications, equipment, metrology and modeling.
At the event, Axcelis will host a company exhibit and the company’s technologists and collaborators will present on nine topics:
- Performance of an Aluminum Sputtering Source for High Current Doping in Power Devices
- Energetic and Surface Metals Characterization of Purion XEmax With and Without Boost™ Technology Using Vapor Phase Decomposition-Inductively Coupled Plasma Mass Spectrometry
- Radiation Characterization and Mitigation of High Energy H+ Beams
- Wear-Resistant Surface Coatings for Long Electrostatic Chuck Life and Stable Performance
- Self-contained Predictive System Diagnostic Sensors
- Comparison of Arsenic and Antimony Dopant Distribution Profiles of Very High Energy Implantations
- New Challenges and Opportunities in Wide Bandgap Materials with Ion Implantation and Annealing Co-Optimization
- Dual Cathode Ion Source for Axcelis’ High Energy Implanters
- Low Metals Ion Source
President and CEO of Axcelis Technologies Russell Low said, “We’re excited to be a Platinum Sponsor of IIT 2024, one of the most important technology forums in the ion implantation industry. We’re especially pleased to be participating at the event in Japan this year, which is a very important market for Axcelis. Axcelis recently opened several new Service Centers in Japan to support our expanding customer base. We remain focused on growing our global market share by providing customers the most innovative, enabling implant technology and support solutions to ensure their success.”
For more information on the event, or to register, visit the conference website at https://smartconf.jp/content/iit2024.
Original – Axcelis Technologies
-
MCC Semi rolled out three new 600V MOSFETs that go beyond high performance. Designed with an integrated fast recovery diode, these advanced components help solve the challenges engineers face when trying to maximize efficiency while minimizing power losses and heat generation.
Ideal for high-voltage applications, MSJWFR60N60, MCTK075N60FH, and MCTK105N60FH feature on-resistance in the sub-100mΩ range — with options as low as 30mΩ — to significantly reduce conduction losses and ensure efficient power delivery.
A low gate charge only adds to their excellence, especially in high-frequency applications where response times are critical. Available in a through-hole TO-247 package and space-saving SMD TOLL-8L options with a Kelvin source connection, these MOSFETs offer a versatile solution for enhancing overall system performance.
Improve reliability for various applications, such as power supplies, AC-DC converters, motor drives, and renewable energy systems, with these low RDS(on) semiconductors from MCC.
Features & Benefits:
- Superjunction MOSFET technology: Enhances efficiency and reduces power losses
- Low on-resistance: Minimizes conduction losses for improved performance
- Low conduction losses: Ensures greater efficiency in power applications
- Low gate charge: Facilitates faster switching and reduced energy consumption
- Integrated fast recovery diode: Provides rapid recovery for better switching performance
- High-speed switching: Supports high-frequency operations, perfect for modern applications
- Versatile packages: Enables design flexibility with through-hole (TO-247) and SMD with Kelvin Source (TOLL-8L-KS) options
Original – Micro Commercial Components
-
LATEST NEWS / PRODUCT & TECHNOLOGY / SiC / WBG2 Min Read
Power Master Semiconductor has released a new package portfolio, TO leadless (TOLL) package for 650V eSiC MOSFET series to meet the increasing demands for high power density and efficiency with superior switching performance in various applications such as AI data center servers, telecom infrastructure, flat panel display power, ESS, and battery formations.
Recently, the rapid growth of artificial intelligence (AI) is expected to drive continued strong data center demand. AI datacenters rely on GPUs that consume 10 to 15 times more power than traditional CPUs. SiC MOSFETs in TOLL package are an optimal solution for the rapidly expanding AI applications today.
The TOLL package has a footprint of 9.9mm x 11.7mm, reducing the PCB area by 30% compared to the D2PAK 7-lead package. Moreover, with a thickness of 2.3mm, it has 60% less height than the D2PAK 7-lead package.
The TOLL offers superior thermal performance and low package inductance (2nH) compared to D2PAK 7-lead package. Kelvin source configuration lowers gate noise and reduces turn-on loss by 60% compared to same device without Kelvin source configuration, enabling higher frequency operation and improved power density. The new PCT65N27M1 has a VDSS rating of 650 V with a typical RDS(ON) of 27mΩ and a maximum drain current (ID) of 84 A.
Power Master Semiconductor’s products in TOLL package has special grooves in the gate and source pins to enhance the performance of the solder joint and offers Moisture Sensitivity Level 1 (MSL 1).
Original – Power Master Semiconductor
-
STMicroelectronics has joined Quintauris GmbH as its sixth shareholder. ST joins other Quintauris shareholders, Robert Bosch GmbH, Infineon Technologies AG, Nordic Semiconductor ASA, NXP® Semiconductors, and Qualcomm Technologies, Inc.
Quintauris was founded in December 2023 to advance the adoption of products based on RISC-V principles. This will include access to reference architectures, and assistance in the creation of versatile, cross-industry solutions. The initial core industry applications will be for the automotive sector, with a planned expansion to mobile and IoT.
RISC-V is an open-standard Instruction Set Architecture (ISA), originally developed by researchers at the University of California, Berkeley, in 2010.
“ST is a welcome addition to our list of shareholders,” said Alexander Kocher, CEO, Quintauris.“By fostering collaboration between the world’s largest semiconductor companies, we aim to explore and unlock the potential of RISC-V for all the industries we will serve.”
Original – STMicroelectronics
-
LATEST NEWS / PRODUCT & TECHNOLOGY2 Min Read
Keysight Technologies, Inc. introduces the Electrical Structural Tester (EST), a wire bond inspection solution for semiconductor manufacturing that ensures the integrity and reliability of electronic components.
The semiconductor industry is faced with testing challenges due to the increasing density of chips in mission-critical applications such as medical devices and automotive systems. Current testing methodologies often fall short in detecting wire bond structural defects, which lead to costly latent failures. In addition, traditional testing approaches frequently rely on sampling techniques that do not adequately identify wire bond structural defects.
The EST addresses these testing challenges by using cutting-edge nano Vectorless Test Enhanced Performance (nVTEP) technology to create a capacitive structure between the wire bond and a sensor plate. Using this method the EST can identify subtle defects such as wire sag, near shorts, and stray wires to enable a comprehensive assessment of wire bond integrity.
Key benefits of the EST include:
- Advanced defect detection – Identifies a wide range of wire bond defects, both electrical and non-electrical, by analyzing changes in capacitive coupling patterns to ensure the functionality and reliability of electronic components.
- High-volume manufacturing ready – Enables throughput of up to 72,000 units per hour through the ability to test up to 20 integrated circuits simultaneously, which boosts productivity and efficiency in high-volume production environments.
- Big data analytics integration: Captures defects and enhances yield through advanced methods like marginal retry test (MaRT), dynamic part averaging test (DPAT), and real-time part averaging test (RPAT).
Carol Leh, Vice President, Electronic Industrial Solutions Group Center of Excellence, Keysight, said: “Keysight is dedicated to pioneering innovative solutions that address the most pressing challenges in the wire bonding process. The Electrical Structural Tester empowers chip manufacturers to enhance production efficiency by rapidly identifying wire bond defects, ensuring superior quality and reliability in high-volume manufacturing.”
The Electrical Structural Tester will be showcased at the Keysight booth (K3283) at SEMICON Taiwan 2024, Taipei Nangang Exhibition Center Hall 1, September 4-6, 2024.
Original – Keysight Technologies
-
Toshiba Electronics Europe GmbH has launched a small new intelligent power device (IPD) for space-constrained brushless DC (BLDC) motor drive applications such as air conditioners, air purifiers, and pumps.
The new IPD (TPD4165K) has an increased maximum output current of 3A, compared to the 2A rating of Toshiba’s existing products like TPD4163K, or TPD4164K. This extends the range of supported equipment and allows use in higher power applications. The device is suitable for sine-wave drive.
As power supply voltage may fluctuate significantly in some regions where the IP could be used, the absolute maximum voltage rating (VBB) has been increased to 600V to enhance long-term reliability. This represents a 20% increase over Toshiba’s previous products (TPD4123K, TPD4123AK, TPD4144K, TPD4144AK, TPD4135K, TPD4135AK).
The new TPD4165K is housed in a through-hole HDIP30 package. This has a 21% smaller footprint than the DIP26 package used for many of Toshiba’s previous products, simplifying the design process for challenging space-constrained applications. The new device measures just 32.8mm x 13.5mm x 3.525mm. It supports either three-shunt or single-shunt resistor circuit for current sensing.
Built into the new IPD is a range of safety features including over-current, under-voltage and thermal shutdown. Additionally, an external signal can be applied to the SD pin to control the behaviour of the output stage. The DIAG output pin provides the status of the safety conditions.
Designers can freely access a reference design for a sensorless BLDC motor drive circuit based upon the new TPD4165K and Toshiba’s TMPM374FWUG microcontroller with vector control engine capability. The reference design data can be downloaded from Toshiba’s website.
Toshiba will continue to expand its product range by adding devices with improved characteristics. This will assist designers by improving design flexibility as well as contributing to carbon neutrality through energy-saving motor control.
Original – Toshiba
-
LATEST NEWS / PRODUCT & TECHNOLOGY / Si / SiC / WBG3 Min Read
onsemi released the newest generation silicon and silicon carbide hybrid Power Integrated Modules (PIMs) in an F5BP package, ideally suited to boost the power output of utility-scale solar string inverters or energy storage system (ESS) applications. Compared to previous generations, the modules offer increased power density and higher efficiencies within the same footprint to increase the total system power of a solar inverter from 300kW up to 350kW.
This means a one-gigawatt (GW) capacity utility-scale solar farm using the latest generation modules can achieve an energy savings of nearly two megawatts (MW) per hour or the equivalent of powering more than 700 homes per year. Additionally, fewer modules are required to achieve the same power threshold as the previous generation, which can reduce power device component costs by more than 25%.
With solar power having achieved the lowest levelized cost of energy (LCOE), it is increasingly becoming the go-to source for renewable power generation around the world. To compensate for solar power’s variability, utility operators are also adding large-scale battery energy storage systems (BESS) to ensure a stable energy flow to the grid. To support this combination of systems, manufacturers and utilities require solutions that offer maximum efficiency and reliable power conversion. Every 0.1% of efficiency improvement can equate to a quarter of a million dollars in annual operational savings for every one gigawatt of installed capacity.
“As a variable energy source dependent on sunlight, continual advances in increasing system efficiencies, reliability and advanced storage solutions are needed to be able to maintain the stability and reliability of global grids during peak and off-peak power demand,” said Sravan Vanaparthy, vice president, Industrial Power Division, Power Solutions Group, onsemi. “A more efficient infrastructure increases adoption and assures us that, as more solar power generation is built out, less energy is wasted and pushes us forward on a path away from fossil fuels.”
The F5BP-PIMs are integrated with 1050V FS7 IGBT and the 1200V D3 EliteSiC diode to form a foundation that facilitates high voltage and high current power conversion while reducing power dissipation and increasing reliability. The FS7 IGBTs offer low turn-off losses and reduce switching losses by up to 8%, while the EliteSiC diodes provide superior switching performance and lower voltage flicker by 15% compared to previous generations.
These PIMs employ an innovative I-type Neutral Point Clamp (INPC) for the inverter module and a flying capacitor topology for the boost module. The modules also use an optimized electrical layout and advanced Direct Bonded Copper (DBC) substrates to reduce stray inductance and thermal resistance. In addition, a copper baseplate further decreases thermal resistance to the heat sink by 9.3%, ensuring the module remains cool under high operational loads. This thermal management is crucial in maintaining the efficiency and longevity of the modules, making them highly effective for demanding applications that require reliable and sustained power delivery.
Original – onsemi
-
PANJIT announced a strategic partnership with National Kaohsiung University of Science and Technology (NKUST). This collaboration bridges the gap between academia and industry, marking a significant step in semiconductor talent development.
Through this partnership, PANJIT and NKUST will establish a comprehensive platform that connects the educational and industrial spheres. PANJIT will offer NKUST students extensive industry insights and internship opportunities, allowing them to apply their theoretical knowledge in real-world settings.
Champion Microelectronic Corp., a member of the PANJIT Group, will collaborate with Professors Jenn-Yu Lin and Cheng-Liang Huang of NKUST’s Department of Microelectronics Engineering and their students on a high-end IC product development project targeting the automotive, industrial control, and automated factory sectors. This initiative aims to meet the growing demand for high-end semiconductors in the global green energy market.
Jason Fang, President of PANJIT Group, stated, “PANJIT is dedicated to building a tier 1 international corporation that our employees are proud of while fostering social engagement. Cultivating talent is a key part of this vision and essential for sustainable industrial development. We believe that a close partnership with academia can drive innovation and accelerate industry progress. In terms of our ESG development strategy, we strive to balance environmental protection, social responsibility, and corporate governance. We are actively engaged in green initiatives, including renewable energy projects, afforestation, forest ecosystem conservation, connecting with local culture and nurturing talent, creating a pleasant work environment for employees, and upholding core values of integrity. More importantly, we aim to pass on PANJIT’s values and technologies to future generations, working together toward a more sustainable future.”
President Ching-Yu Yang of National Kaohsiung University of Science and Technology (NKUST) pointed out that “the establishment of world-class companies in Kaohsiung and the active moves by top universities in the north to enter Kaohsiung are positive signals for the development prospects of the Southern Semiconductor S Corridor. NKUST has long been deeply rooted in southern Taiwan, establishing close cooperative relationships with various industries.
In the trend of rapid industrial transformation towards intelligence and automation, the direction of technological application and talent cultivation must closely align with industrial development trends to strengthen long-term industrial competitiveness. The two key factors in strengthening Taiwan’s industrial competitiveness are technology and talent. Recently, NKUST received a grant of more than NT$100 million from the Ministry of Education to build a “Semiconductor Process Equipment Technology Talent Training Base” in the Department of Microelectronics Engineering of College of Electrical Engineering and Computer Science to strengthen the cultivation of semiconductor technology talents.
Now, the cooperation between NKUST and the PANJIT Group can create mutual benefits in the two critical areas of research/development applications and talent cultivation. ”President Ching-Yu Yang is very much looking forward to deepening the cooperation between the two parties in the future. He stated, “Playing the role of a strong supporter in national industrial research & development and talent cultivation is an unshakable mission for NKUST.”
This collaboration extends beyond talent development to include technology exchange, setting a precedent for future industry-academia partnerships and encouraging more enterprises and institutions to contribute to nurturing the next generation of talent.
Original – PANJIT International