-
Key Foundry announced that it has changed its corporate name to SK keyfoundry. The new name was recently approved by the shareholder, which went into effect starting January 1, 2024. SK keyfoundry completed the submission of applications to register a trademark at the end of last year in Korea and certain foreign countries.
SK keyfoundry, an 8-inch foundry which had been spun off from Magnachip Semiconductor in September 2020, became a subsidiary of SK hynix in August 2022. Post the acquisition by SK hynix, the company has pushed ahead with a name change together with the post-merger integration (PMI) and finally decided SK keyfoundry as its new name considering the business continuity with the existing customers. SK keyfoundry expects to gain a momentum in expanding its business by taking this name change as an opportunity to improve its reputation both domestically and internationally.
Headquartered in Cheongju, SK keyfoundry has a fab with the capacity of producing approximately 100,000 wafers per month, conducting a foundry business to mostly produce mixed-signal & analog chips, including Display Driver IC (DDI), Micro Controller Unit (MCU) and 8-inch wafer-based power IC, which is suitable for small quantity production of diverse products.
In particular, recently, there is a growing demand for 100V or higher BCD (Bipolar-CMOS-DMOS) in the power IC market to achieve high speed electric power delivery and high power efficiency. As a leading foundry in HV BCD process, SK keyfoundry has been actively striving to position itself in the global market of power ICs for automotive and industrial. In addition, for the continuity of supplying power ICs, SK keyfoundry has also started developing the process development of Gallium Nitride (GaN), which is considered to be the next-generation power semiconductor device and is also actively reviewing the development of Silicon Carbide (SiC).
In the meantime, SK keyfoundry has designated 2024 as a year to begin the “deep change” to accomplish innovative growth and change and in connection with it, it recently carried out the reorganization of internal organizational structure. The ultimate goals are to secure new customers by improving our sales networks in the U.S and China and to accomplish high customer satisfaction by providing differentiated foundry process development and improving the quality of our products.
“Name change will instill a sense of belonging as a member of SK Group and serve as a driving force to evolve our company into a strong and agile one,” said Derek D. Lee, CEO of SK keyfoundry. “SK keyfoundry will work hard to gain more ground in the 8-inch foundry market by actively engaging in the market of power ICs for automotive.”
Original – SK keyfoundry
-
LATEST NEWS / PRODUCT & TECHNOLOGY / Si3 Min Read
Alpha and Omega Semiconductor Limited announced the release of two αMOS5™ 600V FRD Super Junction MOSFETs. αMOS5™ is AOS’s market and application-proven high voltage MOSFET platform, designed to meet the high efficiency and high-density needs of servers, workstations, telecom rectifiers, solar Inverters, EV charging, motor drives and industrial power applications.
The design of today’s mid-high power switched-mode power supply (SMPS) and solar inverter systems boil down to four major challenges – higher efficiency, higher density, lower system costs, and uncompromised robustness. High Voltage Super Junction MOSFETs are dominant the choice for topologies such as single/interleaved/dual boost/CrCM TP PFCs, LLC, PSFB, multi-level NPC/ANPC and so forth.
αMOS5™ has been the leading High Voltage Super Junction solution tailored for fast switching, ease-of use and robustness in mission-critical applications. αMOS5™ FRD FETs are engineered with strong intrinsic body diode to handle hard commutation scenarios, when the freewheeling body diode is in reverse recovery due to abnormal operations, such as short-circuit or start-up transients.
The two products released, the AOK095A60FD (TO-247) and AOTF125A60FDL (TO-220F), are 600V FRD FETs with 95mohm and 125mohm maximum Rdson, respectively. In tests conducted by AOS engineers, the body diodes of these two FRD FETs have survived high di/dt, under abnormal system conditions, even at elevated junction temperatures of up to 150°C. Additionally, AOS tests have shown that these devices’ turn off energy (Eoff) are noticeably lower than the competition’s, which contributes to higher efficiency in light or mid-load conditions.
“We defined our products for traditional power supplies, as well as DC/DC and DC/AC converters of solar inverters and ESS systems, where bi-directional topologies are needed. As energy storage-ready inverters become the trend and high voltage batteries are utilized increasingly in AC-coupled systems, the AOK095A60FD and AOTF125A60FDL will become industry leading solutions for bi-directional DC/DC and inverter/PFC applications that serve a wide range of power supplies, solar PV inverters, and ESS hybrid converters,” said Richard Zhang, Senior Director of Product Line and Global Power Supply Business at AOS.
Technical Highlights
- Rugged, fast recovery diode (FRD) with reduced Qrr for demanding use cases
- Engineered for both hard and soft switching topologies with ultra-low switching loss
- Strong UIS and SOA capabilities
- Engineered to prevent self turn-on
- Suitable for LLC, PSFB, CrCM Totem-Pole, Multi-level NPC and CrCM H-4/Cyclo Inverter applications
Original – Alpha and Omega Semiconductor
-
LATEST NEWS2 Min Read
Littelfuse, Inc. was recently named one of America’s Most Responsible Companies on Newsweek’s 2024 list. This marks the second consecutive year the Company has been recognized.
This prestigious award is presented by Newsweek and Statista Inc., the world-leading statistics portal and industry ranking provider. The final list recognizes the top 600 most responsible companies in the United States, spanning 14 industries.
“We are proud to be consistently recognized by Newsweek and Statista as one of the most responsible companies in America,” said Dave Heinzmann, Littelfuse President and Chief Executive Officer. “We understand the immense potential to create environmental, social, and ethical impact, and have positioned our business to deliver on our purpose—empowering a sustainable, connected, and safer world. I would like to thank our global teams, customers, suppliers, and partners who work every day to strengthen our sustainability efforts.”
America’s Most Responsible Companies ranking focuses on a holistic view of corporate responsibility that considers all three pillars of ESG: Environment, Social, and Corporate Governance. The analysis is based on KPI research and a public survey.
To learn more about the unwavering commitment of Littelfuse to drive positive change in the world, read the company’s 2022 Sustainability Report at littelfuse.com/about-us/sustainability.Original – Littelfuse
-
Toshiba Electronic Devices & Storage Corporation will move its semiconductor business unit and its research and development (R&D) center to a new building in Toshiba Corp’s Komukai Complex in Kawasaki. It will also be home to Toshiba’s Corporate R&D Center, strengthening synergy within Toshiba Group’s R&D organizations.
The new building will provide spaces for exhibitions and other events open to people from outside the company, as well as collaboration spaces for co-creation with customers. It will create an environment customers can feel free to visit, and promote new ways of working unconstrained by typical workplace limitations.
Virtually all energy will be derived from renewable, and CO2 emissions from power consumption will target zero, contributing to the realization of carbon neutrality.
Division names: Semiconductor Division and Electronic Devices & Storage R&D Center
Address: 1, Komukai-Toshiba-cho, Saiwai-ku, Kawasaki, Kanagawa 212-8583, Japan
Phone number: +81-44-548-2000 (switchboard; no change)
Relocation date: January 22, 2024The address of the Storage Products Division and the company’s registered address remain unchanged, as below.
Storage Products Division
8, Shinsugita-cho, Isogo-ku, Yokohama, Kanagawa 235-8522, JapanRegistered headquarters
1-1, Shibaura 1-Chome, Minato-ku, Tokyo, JapanOriginal – Toshiba
-
GaN / LATEST NEWS / PRODUCT & TECHNOLOGY / WBG2 Min Read
Teledyne e2v HiRel announced the addition of new space screened versions of its popular 100 V, 90 A and 650 V, 30 A high reliability gallium nitride high electron mobility transistors (GaN HEMTs).
- TDG650E30BSP
- TDG100E90BSP
- TDG100E90TSP
The new parts go through NASA Level 1 or ESA Class 1 screening flow and can be brought up to full Level 1 conformance with extra qualification testing if desired. Typical applications include battery management, dc-dc converters, and space motor drives.
Two new 100 V parts are available with both bottom-side and top-side cooled packaging. One new 650 V 30 A GaN-on-Silicon power transistor is available in a bottom-side cooled package. Each device is available with options for EAR99 or European sourcing.
Teledyne e2v HiRel’s GaN HEMTs feature single wafer lot traceability, extended temperature performance from -55 to +125°C, and low inductance, low thermal resistance packaging.
“Our customers have embraced the previous release of 650 V space screened devices, and we have expanded our portfolio to provide additional options. These GaN HEMT products save customers time and money by providing standard devices without the need for additional screening.” said Mont Taylor, VP of Business Development for Teledyne e2v HiRel. “Our expanded catalog with standard burn-in make it easy for designers to utilize the latest in GaN in their designs.”
Gallium nitride devices have revolutionized power conversion in other industries and are now available in radiation tolerant, plastic encapsulated options that have undergone stringent reliability and electrical testing to help ensure mission critical success. The release of these new GaN HEMTs delivers to customers the efficiency, size, and power-density benefits required in critical aerospace and defense power applications.
Original – Teledyne e2v HiRel
-
LATEST NEWS3 Min Read
Navitas Semiconductor held an Opening Ceremony and 2023 Investor Day at its new headquarters in Torrance, CA.
Torrance Mayor, George Chen, and Dustin McDonald from the Office of the Governor of California joined Navitas’ CEO and co-founder Gene Sheridan to speak and cut the ribbon, officially opening Navitas’ new headquarters. Around 100 highly-skilled Navitas staff are employed in Torrance for all aspects of GaN and SiC design, applications, test, characterization and quality plus finance, marketing and HR. Further team growth is planned for 2024, including a $20M investment to add SiC epi-growth capability for strategic manufacturing expansion.
The well-attended investor meeting began with Mr. Sheridan’s recap on a year of significant growth for Navitas, with a doubling of revenue, a $92M capital raise, four major new technology platforms and an update on Navitas’ mission to ‘Electrify Our World™. Then, Mr. Sheridan outlined a $1.3T electrification market opportunity as GaN and SiC enable and accelerate our transition away from fossil fuels to a carbon-neutral, full-electrified world, envisaged as ‘Planet Navitas’.
Dan Kinzer, co-founder and COO/CTO then introduced technology platforms including Gen-4 GaNSense half-bridges for motor drive and mobile fast chargers, GaNSafe – the world’s most protected GaN powertrain, GaNSense Control, and a revolutionary new bi-directional GaN power IC platform with up to 9x smaller chip size than legacy silicon MOSFETs or IGBTs. Sid Sundaresan, SVP for the GeneSiC product line added more detail on the Gen-3 Fast SiC platform.
In May, Navitas announced a qualified customer pipeline of $760M, across mobile, solar/ESS, EV/eMobility, data center and appliance/industrial markets. At the Investor Day, David Carroll, SVP Worldwide Sales announce that the pipeline had increased by 65% to $1.25B, with 10/10 top mobile OEMs and majority of solar inverter makers. Investors also heard from the voices of Navitas customers, including Rick Liu from Accopower for EV, Belkin’s Steve Malony for mobile, Philipp Guo from VREMT for EV, Adam Weissman from Anker for mobile, and Harron Inam from DG Matrix for EV roadside charging.
Ron Shelton, Navitas CFO, presented more detail on the impressive financial results with increased gross margin, and over $170M is cash and no debt, plus a long-term target to grow 6x-10x more than the market, with 50%+ gross margins.
In-person visitors then toured the Navitas facility, including past & present demos and the ‘Electrify Studio’ experience – where Navitas is creating a vision for our electrified planet – plus SiC design, GaN IC design, applications, test & characterization, quality & reliability.
The day concluded with a celebration at the Crypto.com Arena, where guests enjoyed the LA Clippers’ victory—a fitting finale to a day filled with inspiration, innovation, and collaboration.
Comprehensive Investor Day material is available via the Navitas website, with presentation slides, and complete video playback of the main presentations, customer testimonials, and facility tour.
Original – Navitas Semiconductor
-
Due to the positive development of the market capitalization, the Siltronic share is rejoining the MDAX index today. After several months in the SDAX, the Siltronic AG share is once again represented in the second most important index of the German stock exchange. Additionally, Siltronic shares will remain part of the TecDAX.
Throughout the year, Siltronic’s share price was negatively impacted by the market weakness in the semiconductor industry, which led to its descent to the SDAX in June 2023. Since then, the share price has steadily recovered, and the company’s market capitalization has increased significantly.
Dr. Michael Heckmeier, CEO of Siltronic, commented on this development: “The re-inclusion of Siltronic in the MDAX reflects investors’ confidence in our future prospects and our continued growth. This underscores the robust share price performance of recent months.”
Siltronic’s inclusion in the MDAX is part of Deutsche Börse AG’s regular quarterly review. The decision is based on the market capitalization of the freely tradable shares, i.e. the free float market capitalization.
Original – Siltronic
-
Infineon Technologies AG announced its commitment to set a science-based target. By that Infineon expands its climate strategy even further. The company is very well on track towards CO2-neutrality by 2030, relating to its direct and indirect energy related emissions (Scope 1 and 2).
After having already reduced these emissions by 56.8 percent to date versus the base year of 2019, Infineon now sets itself even more ambitious targets by involving the supply chain (Scope 3) in the company’s climate protection efforts.
“Decarbonization is a guiding principle for Infineon. We have made great progress. With our commitment to set a science-based target, we are taking the next important step, adhering to the widely respected global standard for tackling climate change”, said Elke Reichart, Chief Digital Transformation Officer and responsible for Sustainability at Infineon. “We are actively inviting our suppliers to join us on our journey by setting their own carbon reduction targets. To truly address climate change, collaboration across the entire value chain, transparent and comprehensive data as well as global standards are foundational.”
Infineon has doubled its revenue since 2019 and halved its CO2 emissions (Scope 1 and 2) at the same time. The main drivers for lowering emissions are energy efficiency measures, comprehensive PFC abatement measures and switching its operations to renewable energy, which makes proportionally the largest contribution.
In 2023, Infineon reaches another key milestone in this respect. The two largest manufacturing sites in Asia – Kulim and Melaka in Malaysia – have now transitioned to green electricity, following the switch to renewables at its European and North American sites in 2021 and 2022 respectively.
The Science Based Targets initiative (SBTi) serves as a benchmark for ambitious climate action in the private sector. The initiative provides a clearly defined pathway for companies to reduce greenhouse gas (GHG) emissions. Targets are considered ‘science-based’ if they are in line with the latest climate science in order to meet the goals of the Paris Agreement – limiting global warming to well below 2°C above pre-industrial levels and pursuing efforts to limit warming to 1.5°C. SBTi is a partnership between the Carbon Disclosure Project (CDP), the United Nations Global Compact, World Resources Institute (WRI) and the World Wide Fund for Nature (WWF).
In 2020, Infineon had set its carbon neutrality target 2030 (Scope 1 and 2 emissions) already in line with science-based target requirements. With the expansion of its climate strategy to include Scope 3, Infineon is working closely together with supply chain partners and is putting special emphasis on further improvements in data availability and accuracy.
Original – Infineon Technologies
-
Dr. Christian Kranert, Group Manager Equipment and Defect Simulation of the Materials Department at Fraunhofer IISB, developed a new software for the fast, full-wafer and automated detection and classification of crystal defects in silicon carbide (SiC) substrates. He also pushed the licensing of his new, so-called x-ray ropography (XRT) toolbox to the users of the x-ray topography measuring device XRTmicron from Rigaku. Another highlight is the establishment of two new SEMI International Standards for 4H-SiC defect quantification using XRT test methods.
These outstanding results confirm the success of the Joint Labs model at Fraunhofer IISB. Joint Labs are an exclusive opportunity to collaborate with Fraunhofer IISB in an industry-compatible laboratory environment.
Rigaku Europe SE and Fraunhofer IISB are operating the Center of Expertise for X-ray Topography, a joint lab that is located at the IISB’s headquarters in Erlangen, Germany. This fruitful collaboration is vividly illustrated by the new business in the field of SiC wafer mapping, which Rigaku has built up around its XRTmicron product line in less than two years.
The new LZE Prize honors Fraunhofer IISB employees for exceptional achievements. The LZE Prize is awarded for outstanding acquisitions or particularly successful collaborations, new networks with domestic and foreign partners or above-average achievements in the transfer of know-how from research to industry. The Leistungszentrum Elektroniksysteme (LZE) is a joint initiative of the Fraunhofer-Gesellschaft, Fraunhofer IIS, Fraunhofer IISB, and FAU Erlangen-Nürnberg (FAU), together with industry partners and further research institutes.
Original – Fraunhofer IISB