-
LATEST NEWS / PROJECTS
STMicroelectronics Signed a 15 year Power Purchase Agreement with ERG for Supply of Renewable Energy
2 Min ReadSTMicroelectronics and ERG, a leading European independent producer of energy from renewable sources, through its subsidiary ERG Power Generation, announced that they have signed a fifteen-year Power Purchase Agreement (PPA) for the supply of renewable energy to its operations in Italy over the 2024-2038 timeframe. In Italy, ST operates two high-volume semiconductor manufacturing sites in Agrate (near Milan) and Catania as well as multiple R&D, design, and sales and marketing sites.
The agreement is based on the sale by ERG of approximately 250 GWh of renewable energy per year, equivalent to a total volume of 3.75 TWh over 15 years, produced by the Sicilian wind farms of Camporeale near Palermo and Mineo-Militello-Vizzini near Catania. Both are repowering projects – upgraded with state-of-the art technologies for better efficiency and significantly higher power generation with a total installed capacity of 151.4 MW.
Geoff West, EVP and Chief Procurement Officer, STMicroelectronics, commented: “This agreement marks yet another important step towards ST’s goal of becoming carbon neutral in its operations (Scope 1 and 2 emissions, and partially scope 3) by 2027, including the sourcing of 100% renewable energy by 2027. PPAs will play a major role in our transition. Starting in 2024, this PPA with ERG will provide a significant level of renewable energy for ST’s operations in Italy, which includes R&D, design, sales and marketing and large-volume chip manufacturing.”
Paolo Merli, Chief Executive Officer of ERG commented: “We are pleased with this agreement with STMicroelectronics, a leading global technology operator committed, like ERG, to decarbonizing the planet through the use of renewable energy in its industrial processes. This agreement allows us to enhance, following the Partinico-Monreale wind farm, two additional repowering projects through energy sales mechanisms capable of stabilizing revenues, in line with current market standards, ensuring the proper remuneration of invested capital”.
More information about ST’s energy and climate change commitments is available here.
STMicroelectronics was supported by its PPA advisory partners act renewable GmbH, renewable energy consultancy to multinational corporates, Pexapark AG, a renewables market intelligence, software and advisory company, and Parola Associati, external legal counsel.
Original – STMicroelectronics
-
AIXTRON SE has officially started the construction of the new innovation center at its headquarters in Herzogenrath, Germany. The leading provider of deposition equipment to the semiconductor industry is investing around EUR 100 million in 1000m2 of clean room with additional space for the required metrology equipment.
This research facility will feature the latest technologies available in the industry. The first systems are scheduled to move into the new building during the second half of 2024. The official handover is planned for early 2025.
This milestone in the company’s successful history was marked with a symbolic ground-breaking ceremony attended by representatives from politics, science and research as well as key suppliers of the company. The framework for this significant step was a celebration in honor of AIXTRON’s 40th year since its founding: The company started in December 1983 as a spin-off from RWTH Aachen University.
Since that time, AIXTRON has always been at the forefront of innovation and new, groundbreaking semiconductor technologies. The new innovation center continues on this path and forms an important foundation for the company’s continued successful growth.
“We have just completely renewed our portfolio with our successful G10 product family. The demand from our customers is already very high, so we are in the middle of a volume ramp. And we are now also starting to work on the next generation of innovative technical solutions. With this, we will successfully drive forward the electrification of the world with the megatrends of digitalization, electromobility, and energy efficiency. The new innovation center provides us with essential capacities for all of this,” says Dr. Felix Grawert, CEO of AIXTRON SE.
The cleanroom area of the innovation center will be of class ISO 6, expandable up to ISO 4. The new complex, known in the industry as “fab”, will be one of the most compact and complex semiconductor fabs in the world: the area has two sub-levels. The first sub-level accommodates, e.g., the pump filter cabinets of the systems while the facility level houses all supporting processes and systems for the entire infrastructure.
This type of space utilization increases cleanroom efficiency by a factor of up to three compared to the previously used cleanroom areas.
Original – AIXTRON
-
Intelligent management of power loads and power sources can make existing power networks more robust in order to handle the growing share of green energy. At the conclusion of the PROGRESSUS research project 22 project partners presented the project’s results in Bari, Italy.
Among other things, a solution was introduced which would make it possible to operate ten to fifteen times more electric car charging stations on a single network connection. In addition, a strategy for tracking electricity from generation all the way to consumption was presented. PROGRESSUS focused on three central topics: Efficient energy conversion, intelligent electricity management and secure network monitoring.
The Electronic Components and Systems for European Leadership Joint Undertaking (ECSEL-JU) and the governments of Germany, Italy, the Netherlands, Slovakia and Spain supported PROGRESSUS with almost 20 million euros. A total of 22 project partners from industry and research participated beginning on 1 April 2020; the project was led by Infineon Technologies AG.
“Decarbonization and electrification go hand in hand. Our power grids will have to perform better and become more stable if they are to handle the growing power volumes and fluctuations in the supply and demand of electricity. This means we need new solutions,” said Thomas Zollver, Senior Vice President Technology & Innovation of the Infineon Connected Secure Systems division.
“The joint research project PROGRESSUS has succeeded in developing a significant number of technologies that can make our existing networks more resilient. The project is thus making an important contribution to freeing our modern lives from fossil energy sources and protecting our climate for future generations.”
The project developed highly efficient electric power converters what minimizes loss while integrating battery storage systems and renewable energy sources such as photovoltaics: The converters integrate ultra-fast sensors and SiC MOSFETs which can be switched at considerably higher speeds.
This makes them suitable for use in new, innovative charge management systems for battery-electric vehicles which reduce the peak power consumption at the site level by as much as 90 percent, without significantly longer charging times. As an alternative the intelligent charging algorithm can support ten to fifteen times more charging stations on the same network connection.
Hardware-based security solutions provide the best possible protection of the communications and data in the power network’s critical infrastructure against manipulation. These solutions also serve as a basis for tracking the energy provided from the point of generation all the way to its consumption. This makes it possible for consumers to prove they are using green electricity.
Joint energy management of multiple buildings can also help relieve power networks. PROGRESSUS project partners have simulated this kind of energy management system based on real data from 16 buildings with photovoltaic systems and energy storage systems. The result: This kind of joint energy management could reduce electricity peak demands present in the public network by an average up to 80 percent, without a negative impact on customers’ needs. This value for the case investigated depends on the season, weather conditions and the configuration of the PV and storage systems.
The findings of the PROGRESSUS project constitute an important contribution to the new products and services which support the achievement of European climate targets.
The 22 partners of the PROGRESSUS research project
- Ceus UG (DE)
- Centre Tecnològic de Telecomunicacions de Catalunya (ES)
- devolo AG (DE)
- ElaadNL (NL)
- Enel X Way S.r.l. (IT)
- Friedrich-Alexander-Universität Erlangen-Nürnberg (DE)
- Greenflux Assets BV (NL)
- Heliox (NL)
- Hybrid Energy Storage Solutions S.L. (ES)
- Infineon Technologies AG (DE)
- Iquadrat Informatica S.L. (ES)
- Consorzio Nazionale Interuniversitario per la Nanoelettronica (IT)
- Acondicionamiento Tarrasense (LEITAT) (ES)
- Mixed Mode GmbH (new company name: Ingenics Digital GmbH) (DE)
- Politecnico di Bari (IT)
- R-DAS, s.r.o. (SK)
- STMicroelectronics S.r.l. (IT)
- Slovak University of Technology in Bratislava (SK)
- TH Köln (DE)
- Delft University of Technology (NL)
- Eindhoven University of Technology (NL)
- University of Messina (IT)
Original – Infineon Technologies
-
LATEST NEWS / PRODUCT & TECHNOLOGY / Si3 Min Read
The accelerated transition to electric vehicles has led to significant innovations in charging systems that demand more cost-efficient and high performing power electronics. Addressing this, Infineon Technologies AG expands its 650 V CoolMOS™ CFD7A portfolio by introducing the QDPAK package.
This package family is designed to provide equivalent thermal capabilities with improved electrical performance over the well-known TO247 THD devices, thus enabling efficient energy utilization in onboard chargers and DC-DC converters.
Efficient and powerful electric vehicle charging systems help reduce charging times and vehicle weight, increasing design flexibility and reduce the total cost of ownership of the vehicle. This new addition complements the existing CoolMOS CFD7A series, offering versatility with top-side and bottom-side cooled packages. The QDPAK TSC (top side cooled), enables designers to achieve higher power densities and optimal PCB space utilization.
The 650 V CoolMOS CFD7A offers several important features for reliable operation in high-voltage applications. Thanks to its reduced parasitic source inductance, the device can minimize electromagnetic interference (EMI), ensuring clear signals and consistent performance.
The Kelvin source pin also provides improved precision for current sensing, ensuring accurate measurements even in challenging conditions. With a creepage distance suitable for high voltage applications, as well as high current capability and high power dissipation (P tot) of up to 694 W at 25°C, it is a versatile and powerful device for a wide range of high-voltage applications.
New system designs using 650 V CoolMOS CFD7A in QDPAK TSC will maximize PCB space use, doubling power density and enhancing thermal management via substrate thermal decoupling. This approach simplifies assembly, eliminates board stacking and reduces the need for connectors, thereby lowering system costs. The power switch reduces thermal resistance by up to 35 percent, providing high power dissipation that outperforms standard cooling solutions.
This feature overcomes the thermal limitations of bottom side cooled SMD designs using FR4 PCBs, resulting in a significant boost in system performance. The optimized power loop design locates drivers near the power switch, improving reliability by reducing stray inductance and chip temperatures. Overall, these features contribute to a cost-effective, robust, and efficient system ideal for modern power needs.
As announced in February 2023, the QDPAK TSC package has been registered as a JEDEC standard for high-power applications, helping to establish a broad adoption of TSC in new designs with one standard package design and footprint. To further to accelerate this transition, Infineon will also release additional Automotive Qualified devices in QDPAK TSC for onboard chargers and DC-DC converters in 2024, such as 750 V and 1200 V CoolSiC™ devices.
Original – Infineon Technologies
-
Toshiba Electronic Devices & Storage Corporation has launched the product “HN1D05FE”, a 400 V voltage switching diode. The new product “HN1D05FE” is suitable for applications that require high voltage characteristics such as commercial AC power supply circuits and AC-DC converter circuits for LED illumination. With a 400 V reverse voltage rating, HN1D05FE is suitable for power supply circuits below 200 V, as well as reverse-current protection and surge protection, and more.
In addition, the new product is housed in a SOT-563 package (Toshiba package name: ES6, 1.6 mm × 1.6 mm (typ.), t=0.55 mm (typ.)) to achieve high voltage characteristics in a small size.
Furthermore, built-in two switching diodes allow reducing the number of devices in circuits which use multiple devices.Moreover, the package size is reduced by approximately 70 % and the package height is as low as 50 % compared with the SOT-24 package (Toshiba package name: SMQ, 2.9 mm × 2.9 mm (typ.), t=1.1 mm (typ.)) of Toshiba’s existing product 1SS399. This helps to downsizing and thinning of the set.
Applications
- Consumer equipment (home appliances, OA equipment, PC, etc.)
- Industrial equipment (FA equipment, PV, semiconductor-manufacturing equipment, etc.)
Features
- High reverse voltage : VR = 400 V
- Low leakage current : IR = 0.1 μA (max) (VR = 400 V)
- Small and thin SOT-563 Package : Toshiba Package Name : ES6 (1.6 mm × 1.6 mm (typ.), t = 0.55 mm (typ.))
Original – Toshiba
-
Resonac Corporation will take part in a consortium of semiconductor-related manufacturers named “Texas Institute for Electronics”, which is located in the state of Texas, USA. Resonac will be the first Japanese member of TIE as a semiconductor material manufacturer.
TIE is a non-profit organization led by The University of Texas at Austin, and consists of the public and private sectors including the state of Texas, semiconductor manufacturers, defense electronics manufacturers, national laboratories, and academic bodies.
Its aim is to advance the roadmap of cutting-edge semiconductor systems by five years (or more than two generations), and to develop them in the United States.. TIE’s strategic member companies include leading semiconductor manufacturers such as AMD, Inc., Micron Technology, Inc., Intel Corporation, Applied Materials, Inc., etc.
Resonac was invited to participate as the strategic member from the materials manufacturers, as it was recognized by TIE for the comprehensive lineup of materials for the front-end and back-end processes used in advanced semiconductors, R&D organization specializing in semiconductor packaging “Packaging Solution Center,” and track record in operating the consortium “JOINT2” composed of semiconductor-related companies. TIE plans to launch a prototype line for wafer-scale 2xD and 3D advanced packaging starting from the second half of 2024.
Semiconductors support the lives of the people as social infrastructure. Development of leading-edge semiconductors to be used for AI and next-generation telecommunication requires cooperation between manufacturers of devices, materials, and equipment. Resonac will aim to cooperate with other companies through its participation in TIE, research and development of leading-edge technologies and contributions to solutions of problems concerning semiconductors.
Aiming to accomplish its purpose, “Change society through the power of chemistry,” Resonac will strive to promote co-creation, and contribute to improvement in semiconductors’ performance, which is needed by society.
Original – Resonac
-
AIXTRON SE enables the semiconductor foundry BelGaN to expand its business into the growing GaN marketand to accelerate GaN technology innovation. For this important strategic step, BelGaN relies on AIXTRON’s new G10-GaN, which offers best-in-class performance, an all-new compact design, and overall lowest cost per wafer.
Starting with an 8x150mm configuration, the system will be delivered to the BelGaN production site in Oudenaarde (Belgium) before the end of 2023 and will in the future migrate to 5x200mm.
BelGaN, a leading GaN (Gallium Nitride) automotive-qualified semiconductor open foundry in Europe, recently announced the production start of its first generation 650V eGaN technology. The Gen1 platform is designed for the requirements of energy-efficient applications for sustainability and carbon neutrality.
The G10-GaN will be used to further extend the range of power chips with voltage ratings from 40V to 1200V, using GaN-on-Si, GaN on SOI, and novel GaN-on-engineered substrates. It will be applied both on lateral as well as vertical power-GaN products, with a focus on high performance, automotive quality and reliability, high yield, and low costs.
“GaN-epitaxy using MOCVD is a most critical process in any power-GaN technology, both to innovate device architectures, boost performance, yield, and quality, and to cut down the cost of GaN products. This drives a paradigm shift in power electronics, opening up fast-growing markets in e-mobility, datacom, energy conversion, etc., on a road to an electrified, carbon-neutral society.
We have been impressed by the high levels of productivity, uniformity, and low cost of ownership of AIXTRON’s new G10 platform. We highly value AIXTRON’s technological advance, leadership, and continuous innovation. The proximity of AIXTRON, in the midst of the GaN ValleyTM ecosystem, and the collaboration with its team is essential for us to rapidly achieve our innovation and production objectives,” says Dr Marnix Tack, CTO and Vice President Business Development of BelGaN.
“We are very proud that BelGaN chose AIXTRON and our latest innovative powerhouse, the G10-GaN, for the important strategic milestone to add GaN epitaxy to its existing GaN processing line in Oudenaarde (Belgium). Currently, GaN power devices are rapidly adopted in a wide range of applications, and many customers are adding GaN capabilities to their silicon lines. We are excited that technology made by AIXTRON is facilitating this important transition,” says Dr. Felix Grawert, CEO and President of AIXTRON SE.
The all-new G10-GaN cluster solution builds on the fundamentals of AIXTRON’s current tool of record, the G5+ C, while extending each single performance metric:the new platform delivers twice the productivity per cleanroom area while enabling a new level of material uniformities, unlocking new levers of competitiveness for AIXTRON’s customers.
They benefit from more than 25% lowest cost of ownership than with any other equipment on the market today. The G10-GaN also guarantees the highest throughput per m2/cleanroom, and with its full automation end-to-end, it is the only MOCVD system fully designed for silicon fabs.
Original – AIXTRON
-
Resonac Holdings Corporation decided at its Board of Directors meeting on changes in corporate management (directors and audit & supervisory board members) as given below.
Kohei Morikawa (Representative Director; Chairman of the Board) will resign as Representative Director, and will be elected as Chairman of the Board at the Board of Directors meeting which is to be held after the General Meeting of Shareholders in late March 2024.
Keiichi Kamiguchi (Board Director; Managing Corporate Officer; Chief Risk Management Officer (CRO)) will resign as Board Director at the General Meeting of Shareholders in late March 2024. Kiyoshi Nishioka (Outside Board Director) will resign as Outside Board Director at the General Meeting of Shareholders in late March 2024.
Meanwhile, Nori Imai (Corporate Officer; Chief Human Resource Officer (CHRO)) will be elected as Board Director at the General Meeting of Shareholders in late March 2024. Kenji Yasukawa (Representative Director; Chairman of the Board, Astellas Pharma Inc.) will be elected as Outside Board Director of REH at the General Meeting of Shareholders in late March 2024.
Jun Tanaka (Audit & Supervisory Board Member) will resign as Audit & Supervisory Board Member at the General Meeting of Shareholders in late March 2024. Kiyomi Saito (Outside Member of Audit & Supervisory Board) will resign as Outside Member of Audit & Supervisory Board at the General Meeting of Shareholders in late March 2024.
Meanwhile, Mitsuo Katayose (Corporate Officer, Resonac Holdings Corporation; General Manager, High Performance Materials Business Headquarters, and General Manager, Life Science Business Headquarters, Resonac Corporation) will be elected as Audit & Supervisory Board Member, REH at the General Meeting of Shareholders in late March 2024.
Kiyoko Toda (former Vice President and Head of International Regulatory Compliance, Japan Branch, American Express International, Inc.) will be elected as Outside Member of Audit & Supervisory Board, REH at the General Meeting of Shareholders in late March 2024.
As of late March 2024, the Board of Directors will consist of Kohei Morikawa (Board Director; Chairman of the Board); Hidehito Takahashi (Representative Director; President and CEO); Hideki Somemiya (Board Director; Managing Corporate Officer; CFO); Tomomitsu Maoka (Board Director; Managing Corporate Officer; CSO/CRO); Nori Imai (Board Director; Managing Corporate Officer; CHRO); Kozo Isshiki, Noriko Morikawa, Tetsuo Tsuneishi, and Kenji Yasukawa (Outside Board Directors).
In addition, Toshiharu Kato will continue serving as Audit & Supervisory Board Member, while Mitsuo Katayose will serve as a newly elected Audit & Supervisory Board Member. Masako Yajima and Yasuyuki Miyasaka will continue serving as Outside Members of the Audit & Supervisory Board, while Kiyoko Toda will serve as a newly elected Outside Member of Audit & Supervisory Board.
Original – Resonac
-
Analog Devices, Inc. announced financial results for its fourth quarter and fiscal year 2023, which ended October 28, 2023.
- Fourth quarter revenue of $2.7 billion with continued double-digit year-over-year growth in Automotive
- Fiscal 2023 revenue of $12.3 billion driven by new records in Industrial & Automotive
- Fiscal 2023 operating cash flow of $4.8 billion and free cash flow of $3.6 billion
- Returned more than $4.6 billion to shareholders in fiscal 2023, including $3.0 billion of share repurchases and $1.7 billion of dividends
“For the fourth quarter, ADI delivered revenue and profitability above the midpoint of our outlook, despite the difficult macroeconomic environment. For the year, 2023 was our third consecutive year of record revenue, led by the strength of our Industrial and Automotive businesses,” said Vincent Roche, CEO and Chair.
“As outlined last quarter, we expect customer inventory digestion to persist into the first half of the year, a reflection of our return to normal lead times and the challenging macro landscape. Despite that backdrop, the robustness of our business model and our continued focus on execution excellence will buttress our operating margins and free cash flow through the cycle.”
Roche continued, “Long-term, the opportunities ahead for ADI remain strongly positive. Our product portfolio is designed to take advantage of numerous secular trends, our opportunity pipeline is robust and expanding, and our commitment to strategic investment in innovation, customer engagement, and supply resiliency remains undeterred. Altogether, I am extremely confident in our ability to leverage these strengths to drive shareholder value for years to come.”
Performance for the Fourth Quarter and Fiscal 2023 (PDF)
Original – Analog Devices
-
LATEST NEWS / PROJECTS / Si / SiC / WBG2 Min Read
onsemi opened an application test lab in Piestany, Slovakia, focused on the advancement of system solutions for battery/plug-in hybrid/electric vehicles (xEVs) and energy infrastructure (EI) power conversion systems. The state-of-the-art systems applications lab provides specialized equipment to develop and test next-generation silicon (Si) and silicon carbide (SiC) semiconductor solutions in collaboration with automotive OEMs, Tier 1s and EI providers.
Modern semiconductor devices are essential for highly efficient power conversion in xEV powertrains and charging, as well as applications in renewable energy. The new lab will play a central role in ensuring that the development of future power products results in highly differentiated, value-add solutions tailored to customers’ specific requirements.
The new facility consists of two high-voltage power labs that focus on systems and device level development as well as evaluation of SiC/Si traction inverters and ACDC/DCDC power converters. Laser welding facilities, mechanical clean rooms and workshops further enable fast prototyping and testing of next-generation system solutions.
Evaluation capabilities for the next-generation system solutions include:
- Continuous 24/7 testing
- Internally developed and patented software and hardware solutions to support high-voltage power cycling via space vector modulation (SVM) and sinusoidal pulse width modulation (SPWM)
- High-accuracy logging devices for assessing SiC and Si health and reliability
- Simulation of the harsh conditions faced by inverters during operation, testing liquid-cooled devices at temperatures as low as minus 50 degrees C and up to 220 degrees C
- Wider range of industry-recognized software allows for the programing of FPGAs and ARM microcontrollers on site, as well as qualification testing, data analysis and 3D modeling
Original – onsemi