• University of Arkansas Breaks Ground on MUSiC Semiconductor Facility

    University of Arkansas Breaks Ground on MUSiC Semiconductor Facility

    5 Min Read

    The University of Arkansas celebrated an important milestone with the groundbreaking on a building that Chancellor Charles Robinson suggested might someday rival the U of A’s most iconic structure, Old Main, in significance to the university and the state of Arkansas.

    Robinson and other university leaders, including University of Arkansas System President Don Bobbitt and members of the U of A System Board of Trustees, as well as researchers and industry leaders, gathered at the Arkansas Research and Technology Park in South Fayetteville to celebrate construction of the national Multi-User Silicon Carbide Research and Fabrication Facility, or MUSiC

    The new semiconductor research and fabrication facility will produce microelectronic chips made with silicon carbide, a powerful semiconductor that outperforms basic silicon in several critical ways. The facility will enable the federal government – via national laboratories – businesses of all sizes, and other universities to prototype with silicon carbide, a capability that does not presently exist elsewhere in the U.S.

    Work at the facility will bridge the gap between traditional university research and the needs of private industry and will accelerate technological advancement by providing a single location where chips can go from developmental research to prototyping, testing and fabrication.

    “This fills a gap for our nation, allowing companies, national laboratories and universities around the nation to develop the low-volume prototypes that go from their labs to fab, ultimately scaling up to the high-volume manufacturing…” said Alan Mantooth, Distinguished Professor of electrical engineering and principal investigator for the MUSiC facility. “We fill that gap. And there’s no other place like it in the world. This is the only place that will be able to do that with silicon carbide.”

    The 18,660 square-foot facility, located next to the National Center for Reliable Electrical Power Transmission at the research and technology park, will address obstacles to U.S. competitiveness in the development of silicon-carbide electronics used in a wide range of electronic devices, circuits and other consumer applications. The building will feature approximately 8,000 square feet of clean rooms for fabrication and testing.

    Education and training within the facility will also accelerate workforce development, helping supply the next generation of engineers and technicians in semiconductor manufacturing, which Mantooth and other leaders have said is critical for bringing semiconductor manufacturing back to the U.S., after it was offshored in the late 1990s and early 2000s. 

    “This is truly a special day in the life of the University of Arkansas,” said Robinson. “This building, it really doesn’t need to be hyped. It is a very important building, and you just know it, important for our university, important for our state, important for our nation.” 

    Robinson invoked another groundbreaking, that of Old Main, the university’s oldest and best known structure, which the university celebrated Aug. 17, 1873, almost exactly 150 years ago. 

    “I took that 150th anniversary of the groundbreaking as a good sign that we are moving in a timely way,” Robinson said, “doing important work in establishing this building.”

    Friday’s groundbreaking occurred a day after the university and the Arkansas Department of Commerce hosted the CHIPS AMERICA Summit, an event in which research, industry and governmental leaders discussed semiconductor-related opportunities resulting from the CHIPS (Creating Helpful Incentives to Produce Semiconductors) and Science Act passed by Congress in 2022. The event featured Adrienne Elrod, director of external and government affairs for the U.S. Department of Commerce’s CHIPS Program Office, U.S. Rep. Steve Womack and Arkansas Secretary of Commerce Hugh McDonald.

    During the summit, Elrod stated that prior to the coronavirus pandemic, 90% of the world’s leading-edge chips were manufactured at one facility in Taiwan. The federal government prioritized the onshoring of this critical technology as a result of manufacturing and production shortages of essential computer chips during the pandemic.

    “If America is going to compete and lead the world over the next century, we must invest in our technology and manufacturing,” Elrod said. “We want to make sure, at the very least, that we have two new large-scale clusters of leading- edge fabs created (in the United States).”

    As Mantooth mentioned, the University of Arkansas can contribute to this effort on a fundamental level and is uniquely positioned to take advantage of opportunities offered by the CHIPS and Science Act, which is providing approximately $280 billion in funding to stimulate domestic research and manufacturing of semiconductors.

    “The university is leaning forward and has now secured funding for projects important to microelectronics research and development,” Womack said during Thursday’s summit. “The university has positioned itself, as I say often, to be the preeminent university research location for microelectronics. … I am grateful for the bright minds at the University of Arkansas with a proven track record of success who will make this happen.”

    Original – University of Arkansas

    Comments Off on University of Arkansas Breaks Ground on MUSiC Semiconductor Facility
  • Renesas Announces Change in Largest Major Shareholder

    Renesas Announces Change in Major Shareholder

    2 Min Read

    Renesas Electronics Corporation announced a change in its largest major shareholder, which will become effective as of August 23, 2023.

    Renesas received notification from INCJ, Ltd. on August 18, 2023, that it will sell a portion of its holdings in Renesas. Effective August 23, 2023, when the stock transfer is completed, INCJ, Ltd. will no longer be the largest major shareholder of Renesas.

    NameINCJ, Ltd.
    Location1-3-1, Toranomon, Minato-ku,Tokyo, Japan 
    Names and titles of representativesChairman and CEO: Toshiyuki ShigaPresident and COO: Mikihide Katsumata
    Main BusinessSpecific business activity support and other work stipulated in the current Act on Strengthening Industrial Competitiveness as of September 21, 2018
    Amount of capital500 million yen
     Number of voting rights(Number of shares held)Ratio to the  number of voting rights held by all shareholdersShareholder ranking
    Before the change
    (June 30)
    1,838,127(183,812,775 shares)10.41%2nd
    After the change 1,749,121(174,912,175 shares)9.90%2nd

    Note 1. “Ratio to the number of voting rights held by all shareholders” before the change is calculated based on the number of voting rights of all shareholders (17,650,540) as of June 30, 2023.

    Note 2. “Ratio to the number of voting rights held by all shareholders” after the change is calculated based on the number of voting rights of all shareholders as of June 30, 2023 (17,650,540) plus the number of voting rights (3,983) pertaining to the treasury shares subsequently disposed under Renesas’ stock compensation plan, ending in a total voting rights of 17,654,523 (but not including treasury stock disposed after August 1, 2023).

    Note 3. While The Master Trust Bank of Japan, Ltd. (Trust Account) is ranked first among large shareholders before and after the change, it does not fall under the category of major shareholder or the largest shareholder as part of the major shareholder group.

    Original – Renesas Electronics

    Comments Off on Renesas Announces Change in Major Shareholder
  • Toshiba Launches Automotive 40V N-Channel Power MOSFETs

    Toshiba Launches Automotive 40V N-Channel Power MOSFETs

    2 Min Read

    Toshiba Electronic Devices & Storage Corporation has launched two automotive 40V N-channel power MOSFETs, “XPJR6604PB” and “XPJ1R004PB,” that use Toshiba’s new S-TOGL™ (Small Transistor Outline Gull-wing Leads) package with U-MOS IX-H process chips. Volume shipments start today.

    Safety-critical applications like autonomous driving systems ensure reliability through redundant design, with the result that they integrate more devices and require more mounting space than standard systems. Accordingly, advancing size reductions in automotive equipment requires power MOSFETs that can be mounted at high current densities.

    XPJR6604PB and XPJ1R004PB use Toshiba’s new S-TOGL™ package (7.0mm×8.44mm) which features a post-less structure unifying the source connective part and outer leads. A multi-pin structure for the source leads decreases package resistance.

    The combination of the S-TOGL™ package and Toshiba’s U-MOS IX-H process achieve a significant On-resistance reduction of 11% against Toshiba’s TO-220SM (W) package product, which has the same thermal resistance characteristics. The new package also cuts the required mounting area by approximately 55% against the TO-220SM(W) package.

    On top of this, the 200A drain current rating of the new package is higher than Toshiba’s similarly sized DPAK + package (6.5mm×9.5mm), enabling high current flow. Overall, the S-TOGL™ package realizes high-density and compact layouts, reduces the size of automotive equipment, and contributes to high heat dissipation.

    Since automotive equipment is used in extreme temperature environments, the reliability of surface mounting solder joints is a critical consideration. The S-TOGL™ package uses gull-wing leads that reduce mounting stress, improving the reliability of the solder joint.

    Assuming that multiple devices will be connected in parallel for applications requiring higher-current operation, Toshiba supports grouping shipment for the new products, in which the gate threshold voltage is used for grouping. This allows designs using product groups with small characteristic variation.

    Toshiba will continue to expand its product line-up of power semiconductor products and contribute to the realization of carbon neutrality with more user-friendly, high-performance power devices.

    Features:

    • New S-TOGL™ package: 7.0mm×8.44mm (typ.)
    • Large drain current rating:
      XPJR6604PB: ID=200A
      XPJ1R004PB: ID=160A
    • AEC-Q101 qualified
    • IATF 16949/PPAP available[4]
    • Low On-resistance:
      XPJR6604PB: RDS(ON)=0.53mΩ (typ.) (VGS=10V)
      XPJ1R004PB: RDS(ON)=0.8mΩ (typ.) (VGS=10V)

    Original – Toshiba

    Comments Off on Toshiba Launches Automotive 40V N-Channel Power MOSFETs
  • U.S. Department of Energy Extends Commitment to Enhanced Semiconductors Through PowerAmerica Institute Renewal

    U.S. Department of Energy Extends Commitment to Enhanced Semiconductors Through PowerAmerica Institute Renewal

    3 Min Read

    The U.S. Department of Energy (DOE)’s Advanced Materials and Manufacturing Technologies Office (AMMTO) announced renewed funding for PowerAmerica, DOE’s first Clean Energy Manufacturing Innovation Institute. PowerAmerica will receive an initial $8 million, with potential funding across four more fiscal years to follow, to continue advancing domestic manufacturing of next-generation WBG semiconductors for power electronics to aid economy-wide decarbonization and electrification. 

    WBG semiconductors use cutting-edge materials that enable power electronics that are used in a range of applications—including industrial equipment, data centers, consumer devices, electric vehicles, and more. Silicon carbide (SiC) and gallium nitride (GaN) WBG semiconductor technology makes the power electronic modules significantly more powerful and energy efficient than those made from conventional semiconductor materials, namely silicon. These high-performance power electronics can increase electric vehicle driving range; help integrate renewable energy into the electric grid; and lead to significant energy savings.

    “The work PowerAmerica—and its 82 member organizations spanning industry, academia, and national labs—is doing to galvanize commercialization of high-performance power electronics is invaluable to our clean energy future,” said AMMTO Director Chris Saldaña. “PowerAmerica has catalyzed an innovation ecosystem that touches nearly every sector up and down each supply chain.”

    Raleigh-based PowerAmerica commercialized more than 10 WBG technologies over five years. To date, 40 percent of PowerAmerica’s 60 projects have reached or are set to reach commercial status.

    Not only is PowerAmerica innovating semiconductors that surpass operational limitations of traditional silicon-based designs, but it also focuses on training the future workforce of America’s manufacturing sector through its strong education and workforce development (EWD) program. Since launching in 2014, PowerAmerica has trained more than; 400 masters and PhD students, 300 short course attendees, 1,800 tutorial participants, and 9,000 K-12 students in STEM programs, including 2,000 participants of hands-on trainings. These numbers are particularly important in addressing the acute workforce shortage the power electronics industry faces, and scaling up PowerAmerica’s existing EWD program is a proposed focus of the new federal funding.

    This federal funding builds upon initial federal funding of $70 million, in addition to $81 million in cost share from its member partners, for a total of $151 million.  

    PowerAmerica is one of seven Clean Energy Manufacturing Innovation Institutes supported by two of DOE’s Energy Efficiency and Renewable Energy program offices: the Advanced Materials and Manufacturing Technologies Office (AMMTO) and Industrial Efficiency and Decarbonization Office (IEDO). In addition, PowerAmerica is one of the 16 member institutes of Manufacturing USA™, a national network of manufacturing innovation institutes created to secure U.S. global leadership in advanced manufacturing through large-scale public-private collaboration on technology, supply chain, and education and workforce development.

    Original – DOE

    Comments Off on U.S. Department of Energy Extends Commitment to Enhanced Semiconductors Through PowerAmerica Institute Renewal
  • Choosing a Supplier of SiC Power Devices for Vehicle Electrification

    Choosing a Supplier of SiC Power Devices for Vehicle Electrification

    3 Min Read

    The rapid growth of technology over the past century brought us as many advantages as many disadvantages including the accelerating global warming with its dramatic consequences we face every day in various parts of the Earth. So far no one found a solution how to stop this process, but there are many solutions how to slow it down. 

    Today we try to respond to this challenge with carbon neutrality initiatives launched in many countries across the globe. And one of the major steps in this green society program is the electrification of passenger and commercial vehicles.

    Right now, companies have various approaches to vehicle electrification including mild-hybrid electric vehicles MHEV, full hybrid electric vehicles HEV, plug-in hybrid electric vehicles PHEV, battery electric vehicles BEV, and fuel-cell electric vehicle FCEV. What some time ago seemed like a big step forward is a reality we live in now.

    And to make this dream come true became possible with the help of power semiconductors. For a long time, semiconductors were used in the automotive industry, and the evolution of power semiconductor materials pushed the transition to the electrification of vehicles. Electric vehicles’ performance and cost depend on the technical level of the motor control system. 

    Previously, silicon (Si) IGBT modules served as the heart of electronic control systems with their relatively high switching speed and low conduction loss. But with the growth of silicon carbide (SiC) technology, EVs step into the new era of electrification.

    Silicon-based semiconductors have been dominating the market for many decades. No wonder, several generations of power electronics engineers were passing their knowledge and experience working with silicon semiconductors. Through time they have short-listed their preferred solutions produced by several companies.

    Based on the current requirements for the improvement of battery life and dynamic performance of electric passenger and commercial vehicles, higher efficiency, and fewer parts and materials are required to further improve the power density of inverters and electric drive assemblies. All this becomes possible with the transition from Si to SiC power devices. But when it comes to the all-new silicon carbide semiconductors and the rapidly growing EV industry, many face difficulties to make the right choice of the silicon carbide devices available in the market.

    Recently I launched a poll to understand what is most important for EV companies when choosing a supplier of SiC power devices. Power electronics engineers from the semiconductor and automotive industries shared their experience and unanimously confirmed that the performance of the power devices plays a crucial role when choosing a supplier. The poll results are:

    • Performance/characteristics – 66%
    • Price – 16%
    • Lead time – 9%
    • Brand – 9%

    Based on the results it is clear that for the EV market today characteristics of SiC power devices and price play the most important role. After all, consumers want high performance and reliability at affordable prices. 

    Nowadays SiC is still more expensive than Si. However, the prices have dropped a lot in the past decade, and the growing number of SiC fabs promises to drop the price in the future. Fingers crossed, in the nearest future, the dream of the consumers for the high-performance, reliable, and affordable EV will come true.

    Comments Off on Choosing a Supplier of SiC Power Devices for Vehicle Electrification
  • Infineon Launched New Automotive OptiMOS™ 5 in TOLx Packages

    Infineon Launched New Automotive OptiMOS™ 5 in TOLx Packages

    2 Min Read

    The electrification of the transportation system is advancing continuously. In addition to passenger cars, 2- and 3-wheelers as well as light vehicles are increasingly being electrified. Therefore, the automotive market for Electronic Control Units (ECUs) powered by 24 V-72 V is expected to keep growing in the coming years.

    To address this development, Infineon Technologies AG is complementing its OptiMOS™ 5 portfolio of automotive MOSFETs in the 60 V and 120 V range with new products in the high power packages TOLL, TOLG and TOLT. They are offering a compact form factor with very good thermal performance combined with excellent switching behavior.

    The six new products offer a narrowed gate threshold voltage (V GS(th)) enabling designs with parallel MOSFETs for increased output power capability. The IAUTN06S5N008, IAUTN06S5N008G and IAUTN06S5N008T are 60 V MOSFETs, and the IAUTN12S5N017, IAUTN12S5N018G and IAUTN12S5N018T are 120 V MOSFETs.

    The on resistance (R DS(on)) ranges from 1.7 mΩ to 1.8 mΩ for the 120 V MOSFETs and is 0.8 mΩ for the 60 V MOSFETs. This makes the 60V MOSFETs perfectly suited for high power 24 V supplied CAV applications or for HV-LV DCDC converters in xEVs. The 120 V MOSFETs are used in 48 V – 72 V supplied traction inverters for 2- or 3-wheelers and light electric vehicles.

    Original – Infineon Technologies

    Comments Off on Infineon Launched New Automotive OptiMOS™ 5 in TOLx Packages
  • Toshiba Developed 2200 V SiC MOSFETs

    Toshiba Developed 2200 V SiC MOSFETs

    2 Min Read

    Toshiba Electronic Devices & Storage Corporation has developed 2200 V silicon carbide (SiC) metal oxide semiconductor field effect transistors (MOSFETs) for photovoltaic (PV) inverters. A two-level inverter with the new devices realized higher frequency operation and lower power loss than a conventional three-level silicon (Si) insulated gate bipolar transistor (IGBT) inverter. The new MOSFETs also contribute to simplification of inverter systems and reductions in their size and weight.

    Three-level inverters enjoy the advantage of low switching losses because the voltage applied to switching devices in the inverters during off-state is half the line voltage. Against this, two-level inverters have fewer switching modules than three-level inverters, realizing a simpler, smaller, and lighter system. However, they require semiconductors with higher breakdown voltage, as the applied voltage is equal to the line voltage. Also, demand for semiconductors with both low loss and high breakdown voltage is growing as 1500 V DC line voltage systems are introduced in photovoltaic and other renewable energy markets.

    Toshiba Electronic Devices & Storage Corporation has developed 2200 V Schottky barrier diode (SBD)-embedded SiC MOSFETs for two-level inverters in 1500 V DC voltage systems. The impurity concentration and thickness of the drift layer has been optimized to maintain the same relationship between the on-resistance and the breakdown voltage as our existing products, and also to achieve high resistance to cosmic rays, a requirement for PV systems. It has also been confirmed that embedding SBDs clamped parasitic PN junctions between the p-base regions and the n-drift layer secure high reliability in reverse conduction.

    Switching energy loss for the developed all-SiC module is far lower than for the Si module (Si IGBTs + Si fast recovery diodes) with the same 2000 V rated voltage class. Estimates of inverter power dissipation found that the developed SiC module achieves higher frequency operation twice that of a conventional Si IGBT, as well as a 37% lower loss for the two-level SiC inverter against the three-level Si inverter. The higher frequency operation enables downsizing and weight reduction of other system components, such as heat sinks and filters.

    Original – Toshiba

    Comments Off on Toshiba Developed 2200 V SiC MOSFETs
  • University of Arkansas Began Construction of the national Multi-User Silicon Carbide Research and Fabrication Facility

    University of Arkansas Began Construction of the National Multi-User Silicon Carbide Research and Fabrication Facility

    4 Min Read

    The University of Arkansas has taken the next step to becoming a national leader in the United States’ semiconductor economy. Semiconductors, such as silicon, are essential materials in most electronic devices and advance performance in fields such as healthcare, national defense, computing and transportation.

    This August, the university began construction on the national Multi-User Silicon Carbide Research and Fabrication Facility, or MUSiC. Capable of silicon or silicon carbide chip fabrication, this new semiconductor research and fabrication facility will enable the government, businesses of all sizes, and universities to prototype in silicon carbide, introducing a capability that does not presently exist in the U.S.

    This unique facility will offer low-volume prototyping for high-volume manufacturing, bridging the gap between traditional university research and the needs of private industry. This will accelerate both workforce development and technological advancement in semiconductors by providing a single location where chips can be go from developmental research to prototyping, testing and fabrication. 

    Alan Mantooth, Distinguished Professor of electrical engineering at the U of A, is principal investigator for MUSiC. He stated that with MUSiC, the university could “begin training the next generation at a variety of degree levels to provide well-trained and educated talent for onshoring semiconductor manufacturing that domestic suppliers offshored in the late 90s and early 2000s. Our training will be equally applicable to silicon and silicon carbide and other materials.”

    Construction coincides with the CHIPS America Summit on Aug. 17, an invitation-only event for research, industry and governmental leaders from across the nation to discuss CHIPS and Science Act semiconductor-related opportunities and the ways in which the U of A and the State of Arkansas are uniquely positioned to lead.

    The summit will feature Director of External and Government Affairs for the U.S Department of Commerce’s CHIPS Program Office, Adrienne Elrod. U.S. Representative Steve Womack and Arkansas Secretary of Commerce Hugh McDonald will also participate.

    In addition to the MUSiC facility, the U of A is also home to the first Energy Frontier Research Center in Arkansas, as part of a team of researchers who received $10.35 million from the U.S. Department of Energy. The Center for Manipulation of Atomic Ordering for Manufacturing Semiconductors is dedicated to investigating the formation of atomic orders in semiconductor alloys and their effects on various physical properties. This research program will enable reliable, cost-effective and transformative manufacturing of semiconductors. 

    Researchers at the U of A previously established the MonArk NSF Quantum Foundry to accelerate the development of quantum materials and devices. In collaboration with Montana State University, and other member universities, the foundry supports the study of 2-D materials — consisting of a single layer of bonded atoms — by aiding researchers and facilitating the exchange of ideas across academia and industry. The project leads the fabrication of 2-D material quantum devices and their characterization, using low-temperature electronic transport and optoelectronic techniques.

    The U of A’s existing and expanding research foundation means it’s uniquely positioned to take advantage of the recent CHIPS (Creating Helpful Incentives to Produce Semiconductors) and Science Act, which is providing approximately $280 billion in funding to stimulate domestic research and manufacturing of semiconductors.

    As a result of manufacturing and production shortages of essential computer chips during the pandemic, which are overwhelmingly manufactured overseas, the federal government has prioritized the onshoring of this critical technology.

    About the University of Arkansas: As Arkansas’ flagship institution, the U of A provides an internationally competitive education in more than 200 academic programs. Founded in 1871, the U of A contributes more than $2.2 billion to Arkansas’ economy through the teaching of new knowledge and skills, entrepreneurship and job development, discovery through research and creative activity while also providing training for professional disciplines.

    The Carnegie Foundation classifies the U of A among the few U.S. colleges and universities with the highest level of research activity. U.S. News & World Report ranks the U of A among the top public universities in the nation. See how the U of A works to build a better world at Arkansas Research and Economic Development News.

    The national Multi-User Silicon Carbide Research and Fabrication Facility, or MUSiC, will provide opportunities for the government and business of all sizes, and universities to prototype in silicon carbide, introducting a capability that does not currently exist in the U.S.

    Original – University of Arkansas

    Comments Off on University of Arkansas Began Construction of the National Multi-User Silicon Carbide Research and Fabrication Facility
  • European Semiconductor Manufacturing Company is Born

    European Semiconductor Manufacturing Company is Born

    4 Min Read

    TSMC, Robert Bosch GmbH, Infineon Technologies AG, and NXP Semiconductors N.V. announced a plan to jointly invest in European Semiconductor Manufacturing Company (ESMC) GmbH, in Dresden, Germany to provide advanced semiconductor manufacturing services. ESMC marks a significant step towards construction of a 300 mm fab to support the future capacity needs of the fast-growing automotive and industrial sectors, with the final investment decision pending confirmation of the level of public funding for this project. The project is planned under the framework of the European Chips Act.

    The planned fab is expected to have a monthly production capacity of 40,000 300 mm (12-inch) wafers on TSMC’s 28/22 nanometer planar CMOS and 16/12 nanometer FinFET process technology, further strengthening Europe’s semiconductor manufacturing ecosystem with advanced FinFET transistor technology and creating about 2,000 direct high-tech professional jobs. ESMC aims to begin construction of the fab in the second half of 2024 with production targeted to begin by the end of 2027.

    The planned joint venture will be 70 percent owned by TSMC, with Bosch, Infineon, and NXP each holding 10 percent equity stake, subject to regulatory approvals and other conditions. Total investments are expected to exceed 10 billion euros consisting of equity injection, debt borrowing, and strong support from the European Union and German government. The fab will be operated by TSMC.

    “This investment in Dresden demonstrates TSMC’s commitment to serving our customers’ strategic capacity and technology needs, and we are excited at this opportunity to deepen our long-standing partnership with Bosch, Infineon, and NXP,” said Dr. CC Wei, Chief Executive Officer of TSMC. “Europe is a highly promising place for semiconductor innovation, particularly in the automotive and industrial fields, and we look forward to bringing those innovations to life on our advanced silicon technology with the talent in Europe.”

    Dr. Stefan Hartung, chairman of the Bosch board of management: “Semiconductors are not only a crucial success factor for Bosch. Their reliable availability is also of great importance for the success of the global automotive industry. Apart from continuously expanding our own manufacturing facilities, we further secure our supply chains as an automotive supplier through close cooperation with our partners. With TSMC, we are pleased to gain a global innovation leader to strengthen the semiconductor ecosystem in the direct vicinity of our semiconductor plant in Dresden.”

    Semiconductors are not only a crucial success factor for Bosch. Their reliable availability is also of great importance for the success of the global automotive industry. Apart from continuously expanding our own manufacturing facilities, we further secure our supply chains as an automotive supplier through close cooperation with our partners. With TSMC, we are pleased to gain a global innovation leader to strengthen the semiconductor ecosystem in the direct vicinity of our semiconductor plant in Dresden.said Dr. Stefan Hartung, chairman of the Bosch board of management

    “Our joint investment is an important milestone to bolster the European semiconductor ecosystem. With this, Dresden is strengthening its position as one of the world’s most important semiconductor hubs that is already home to Infineon’s largest frontend site,” said Jochen Hanebeck, CEO of Infineon Technologies. “Infineon will use the new capacity to serve the growing demand particularly of its European customers, especially in automotive and IoT. The advanced capabilities will provide a basis for developing innovative technologies, products and solutions to address the global challenges of decarbonization and digitalisation.”

    “NXP is very committed to strengthening innovation and supply chain resilience in Europe,” said Kurt Sievers, President and CEO of NXP Semiconductors. “We thank the European Union, Germany, and the Free State of Saxony for their recognition of the semiconductor industry’s critical role and for their true commitment to boost Europe’s chip ecosystem. The construction of this new and significant semiconductor foundry will add much needed innovation and capacity for the range of silicon required to supply the sharply increasing digitalization and electrification of the automotive and industrial sectors.”

    Original – Bosch

    Comments Off on European Semiconductor Manufacturing Company is Born
  • Fuji Electric Releases the 3rd-Generation IPMs

    Fuji Electric Releases 3rd-Generation IPMs

    2 Min Read

    Fuji Electric Co., Ltd. announced the launch of the P633C Series 3rd-generation small IPMs, which help reduce the power consumption of the equipment on which it is mounted, such as home appliances and machine tools.

    IPMs (intelligent power modules) are power semiconductors equipped with a built-in IGBT drive circuit and protection function. They are used for applications including inverters and servo systems. Inverters and servo systems control machine operation by controlling voltage and frequency through power semiconductor switching (turning electricity on and off), but power semiconductors generate power loss and electromagnetic noise during switching.

    This product can reduce both the power loss and the electromagnetic noise generated during switching. Using this product in inverters for home appliances or servo systems for machine tools can reduce the power consumption of the equipment on which it is mounted, thereby contributing to the achievement of a decarbonized society.

    One way to reduce the power loss that occurs during switching is to speed up the switching operation. Faster switching increases electromagnetic noise, which can cause peripheral devices to malfunction. This product uses the latest 7th-generation IGBT/FWD chips, achieving a 10% reduction of power loss and a reduction of electromagnetic noise to approximately 1/3 compared with conventional products. The trade-off characteristics between power loss and noise are among the best in the industry.

    Original – Fuji Electric

    Comments Off on Fuji Electric Releases 3rd-Generation IPMs