• Mazda and ROHM Collaborate to Develop Automotive Components Utilizing Next-Generation Semiconductors

    Mazda and ROHM Collaborate to Develop Automotive Components Utilizing Next-Generation Semiconductors

    3 Min Read

    Mazda Motor Corporation and ROHM Co., Ltd. have commenced joint development of automotive components using gallium nitride (GaN) power semiconductors, which are expected to be the next-generation semiconductors.

    Since 2022, Mazda and ROHM have been advancing the joint development of inverters using silicon carbide (SiC) power semiconductors under a collaborative framework for the development and production of electric drive units. Now, they have also embarked on the development of automotive components using GaN power semiconductors, aiming to create innovative automotive components for next-generation electric vehicles.

    GaN is attracting attention as a next-generation material for power semiconductors. Compared to conventional silicon (Si) power semiconductors, GaN can reduce power conversion losses and contribute to the miniaturization of components through high-frequency operation.

    Both companies will collaborate to transform these strengths into a package that considers the entire vehicle, and into solutions that innovate in weight reduction and design. Mazda and ROHM aim to materialize the concept and unveil a demonstration model within FY2025, with practical implementation targeted for FY2027.

    “As the shift towards electrification accelerates in pursuit of carbon neutrality, we are delighted to collaborate with ROHM, which aims to create a sustainable mobility society with its outstanding semiconductor technology and advanced system solution capabilities, in the development and production of automotive components for electric vehicles” said Ichiro Hirose, Director, Senior Managing Executive Officer and CTO of Mazda. “We are excited to work together to create a new value chain that directly connects semiconductor devices and cars. Through collaboration with partners who share our vision, Mazda will continue to deliver products filled with the ‘joy of driving’ that allows customers to truly enjoy driving, even in electric vehicles.”

    “We are very pleased to collaborate with Mazda, which pursues the ‘joy of driving,’ in the development of automotive components for electric vehicles” said Katsumi Azuma, Member of the board and Senior Managing Executive Officer of ROHM. “ROHM’s EcoGaN™, capable of high-frequency operation, and the control IC that maximizes its performance are key to miniaturization and energy-saving. To implement this in society, collaboration with a wide range of companies is essential, and we have established various partnerships for the development and mass production of GaN. By collaborating with Mazda, which aims to create ‘cars that coexist sustainably with the earth and society,’ we will understand the requirements for GaN from the perspective of application and final product development, contributing to the spread of GaN power semiconductors and the creation of a sustainable mobility society.”

    Original – ROHM

    Comments Off on Mazda and ROHM Collaborate to Develop Automotive Components Utilizing Next-Generation Semiconductors
  • Vishay Unveils 650V MOSFET With Industry-Leading RDS(on) for High-Efficiency Power Conversion

    Vishay Unveils 650V MOSFET With Industry-Leading RDS(on) for High-Efficiency Power Conversion

    2 Min Read

    Vishay Intertechnology, Inc. introduced a new Gen 4.5 650 V E Series power MOSFET that delivers high efficiency and power density for telecom, industrial, and computing applications. Compared to previous-generation devices, the Vishay Siliconix n-channel SiHK050N65E slashes on-resistance by 48.2 %, while offering a 65.4 % lower resistance times gate charge, a key figure of merit (FOM) for 650 V MOSFETs used in power conversion applications.

    Vishay offers a broad line of MOSFET technologies that support all stages of the power conversion process, from high voltage inputs to the low voltage outputs required to power the latest high tech equipment. With the SiHK050N65E and other devices in the Gen 4.5 650 V E Series family, the company is addressing the need for efficiency and power density improvements in two of the first stages of the power system architecture — power factor correction (PFC) and subsequent DC/DC converter blocks.

    Typical applications will include servers, edge computing, and super computers; UPS; high intensity discharge (HID) lamps and fluorescent ballast lighting; telecom SMPS; solar inverters; welding equipment; induction heating; motor drives; and battery chargers.

    Built on Vishay’s latest energy-efficient E Series superjunction technology, the SiHK050N65E’s low typical on-resistance of 0.048 Ω at 10 V results in a higher power rating for applications > 6 kW. With 50 V of additional breakdown voltage, the 650 V device addresses 200 VAC to 277 VAC input voltages and the Open Compute Project’s Open Rack V3 (ORV3) standards. In addition, the MOSFET offers ultra low gate charge down to 78 nC. The resulting FOM of 3.74 Ω*nC translates into reduced conduction and switching losses to save energy and increase efficiency. This allows the device to address the specific titanium efficiency requirements in server power supplies or reach 96 % peak efficiency.

    For improved switching performance in hard-switched topologies such as PFC and two-switch forward designs, the MOSFET released today provides low typical effective output capacitances Co(er) and Co(tr) of 167 pF and 1119 pF, respectively. The device’s resulting resistance times Co(er) FOM is an industry-low 8.0 Ω*pF. The SiHK050N65E is offered in the PowerPAK® 10 x 12 package with a Kelvin connection for reduced gate noise and provides increased dv/dt ruggedness. RoHS-compliant and halogen-free, the MOSFET is designed to withstand overvoltage transients in avalanche mode with guaranteed limits through 100 % UIS testing.

    Original – Vishay Intertechnology

    Comments Off on Vishay Unveils 650V MOSFET With Industry-Leading RDS(on) for High-Efficiency Power Conversion
  • Kulicke & Soffa Launches Asterion R-PW, Targeting Next-Gen Power Semiconductor Packaging

    Kulicke & Soffa Launches Asterion R-PW, Targeting Next-Gen Power Semiconductor Packaging

    2 Min Read

    Kulicke and Soffa Industries, Inc. announced the launch of Asterion-PW, extending its leadership in power device applications with a fast and precise ultrasonic pin welding solution. This advanced solution sets a new standard for pin interconnect capability – redefining efficiency, precision, and reliability.

    Power module devices currently deployed in renewable energy, automotive, and railroad applications are increasingly reliant on pin-based interconnects for critical power storage, management and delivery requirements. The Power module market is one of the fastest growing semiconductor markets – anticipated to support a 12% compound annual growth rate through 2029.

    The Asterion-PW leverages market leading ultrasonic technology which is replacing traditional soldering in crucial applications due to accuracy and productivity improvements. Additionally, due to the elimination of flux and solder paste, the Sonotrode ultrasonic capability provides clear environmental benefits. The Asterion-PW platform also provides unparalleled speed and precision enabling higher throughput and superior quality:          

    • Unmatched Speed and Precision: With a high-resolution linear motor positioning system and innovative, patent-pending Sonotrode design, the Asterion®-PW achieves fine precision Pin placement repeatability.
    • Enhanced Productivity: An integrated high speed bulk pin feeder system and optional material handling system equipped with an advanced cleaning station ensure smooth operation. The cleaning system effectively removes contaminants before encapsulation, improving product quality.
    • Superior Cost of Ownership: The durable Sonotrode boasts one of the longest operational lifespans currently known in the industry, delivering less frequent change overs, outstanding reliability and cost efficiency.

    “Precision drives innovation, and innovation transforms possibilities into realities. The Asterion®-PW for Power module applications is where innovative technology meets performance and cost of ownership benefits, redefining the future of manufacturing,” said Chan Pin Chong, Kulicke & Soffa’s Executive Vice President and General Manager of Products and Solutions.

    Original – Kulicke and Soffa Industries

    Comments Off on Kulicke & Soffa Launches Asterion R-PW, Targeting Next-Gen Power Semiconductor Packaging
  • Nexperia Expands GaN FET Portfolio to Cover Wider Power Ranges in Low- and High-Voltage Applications

    Nexperia Expands GaN FET Portfolio to Cover Wider Power Ranges in Low- and High-Voltage Applications

    2 Min Read

    Nexperia announced the addition of 12 new devices to its continuously expanding e-mode GaN FET portfolio. This latest release is intended to address the growing demand for higher efficiency and more compact systems. The new low and high-voltage e-mode GaN FETs address multiple markets including consumer, industrial, server/computing and telecommunications, with a particular focus on supporting high-voltage, low to mid-power and low-voltage, low to high-power use cases.

    Since introducing e-mode GaN FETs in 2023, Nexperia remains the only supplier in the industry to offer both cascode or d-mode and e-mode devices, providing designers with convenience when faced with variable challenges during the design process.

    The latest additions to Nexperia’s e-mode GaN FET portfolio include new low voltage 40 V bi-directional devices (RDSon<12 mΩ) to support overvoltage protection (OVP), load switching, and low-voltage applications including battery management systems (BMS) in mobile devices, and laptop computers.

    Also featuring in this release are 100 V and 150 V devices (RDSon<7 mΩ) suitable for synchronous rectification (SR) power supplies in consumer devices, DC-DC converters in datacomms and telecoms equipment, photovoltaic micro-inverters, Class-D audio amplifiers and motor control systems in e-bikes, forklifts and light electric vehicles (LEVs). The new higher voltage range features 700 V devices (RDSon>140 mΩ) to support LED drivers and power factor correction (PFC) applications, and 650 V devices (RDSon>350 mΩ) suitable for use in AC/DC converters.

    The superior switching performance of Nexperia’s e-mode GaN FET technology is due to their exceptionally low QG and QOSS values. These new devices offer industry-leading figures of merit (FOM), making them a top choice for high-efficiency power solutions.

    Original – Nexperia

    Comments Off on Nexperia Expands GaN FET Portfolio to Cover Wider Power Ranges in Low- and High-Voltage Applications
  • Nexperia Introduced 1200V SiC MOSFETs in Top-Side Cooled X.PACK for Superior Thermal Performance

    Nexperia Introduced 1200V SiC MOSFETs in Top-Side Cooled X.PACK for Superior Thermal Performance

    3 Min Read

    Nexperia introduces a range of highly efficient and robust industrial grade 1200 V silicon carbide (SiC) MOSFETs with industry leading temperature stability in innovative surface-mount (SMD) top-side cooled packaging technology called X.PAK. This package, with its compact form factor of 14 mm x 18.5 mm, combines the assembly benefits of SMD with the cooling efficiency of through-hole technology, ensuring optimal heat dissipation.

    This release addresses the growing demand from a broad range of high power (industrial) applications for discrete SiC MOSFETs that harness the advantages of top-side cooling to deliver exceptional thermal performance. These switches are ideal for industrial applications such as battery energy storage systems (BESS), photovoltaic inverters, motor drives, and uninterruptible Power Supplies (UPS). Additionally, they are well-suited for electric vehicle charging infrastructure, including charge piles.

    The X.PAK package further enhances the thermal performance of Nexperia’s SiC MOSFETs by reducing the negative impacts of heat dissipation via the PCB. Furthermore, Nexperia’s X.PAK package enables low inductance for surface mount components and supports automated board assembly.

    The new X.PAK packaged devices deliver class-leading figures-of-merit (FoM) known from Nexperia SiC MOSFETs, with RDS(on) being a particularly critical parameter due to its impact on conduction power losses. However, many manufacturers concentrate on the nominal value of this parameter and neglect the fact that it can increase by more than 100% as device operating temperatures rise, resulting in significant conduction losses. Nexperia SiC MOSFETs, on the other hand, offer industry-leading temperature stability, with the nominal value of RDS(on) increasing by only 38% over an operating temperature range from 25 °C to 175 °C.

    “The introduction of our SiC MOSFETs in X.PAK packaging marks a significant advancement in thermal management and power density for high-power applications,” said Katrin Feurle, Senior Director and Head of SiC Discretes & Modules at Nexperia. “This new top-side cooled product option builds on our successful launches of discrete SiC MOSFETs in TO-247 and SMD D2PAK-7 packages. It underscores Nexperia’s commitment to providing our customers with the most advanced and flexible portfolio to meet their evolving design needs.”

    The initial portfolio includes products with RDS(on) values of 30, 40, 60 mΩ (NSF030120T2A0NSF040120T2A1NSF060120T2A0), a part with 17 mΩ will be released in April 2025. An automotive qualified SiC MOSFETs portfolio in X.PAK packaging will follow later in 2025, as well as further RDson classes like 80 mΩ.

    Original – Nexperia

    Comments Off on Nexperia Introduced 1200V SiC MOSFETs in Top-Side Cooled X.PACK for Superior Thermal Performance
  • Taiwan Semiconductor Expands PerFET MOSFET Family with High-Efficiency 80V and 100V Versions for Automotive and Industrial Power Applications

    Taiwan Semiconductor Expands PerFET MOSFET Family with High-Efficiency 80V and 100V Versions for Automotive and Industrial Power Applications

    2 Min Read

    Taiwan Semiconductor has expanded its PerFET family of power MOSFETs with the addition of 80V and 100V versions. Based on TSC’s proprietary PerFET device structures and processes, the new 80V/100V N-channel power MOSFETs offer a best-in-class figure of merit (FOM: RDS(on)*Q = 184) and an industry-leading 175⁰C avalanche rating. The AEC-Q-qualified devices are ideal for automotive power applications—and myriad non-automotive commercial and industrial power applications that demand efficient, reliable performance.

    PerFET devices are housed in TSC-designed, industry-standard-size (5mm x 6mm) PDFN56U (single/dual) packages whose wettable flank improves solder joint reliability and AOI accuracy during PCB assembly. The PerFETs’ low on-resistance (RDS(on)) reduces conduction losses and their very low gate charge (Qg)—optimized for high-speed communication applications—offers the most efficient solution available for 48V input DC/DC converters.

    Six devices comprise the new 100V PerFET series, with single-output current ratings of 50-100A and dual-outputs rated at 31A. Target applications are 48V automotive, SMPS, server and telecom, DC-DC converters, motor drives and polarity switches. The new 80V PerFET series also offers six devices. Single-output models feature current ratings of 33-110A and 31-33A for dual-output models. In addition to those targeted by the 100V series, 80V PerFETs are suitable for ideal diodes, USB-PD and type-C charger/adapters, UPS, solar inverters, LED lighting and telecommunications power applications.

    “Because our PerFET power MOSFETs are built to automotive standards, design engineers can use them to achieve automotive-grade reliability in competitively priced, non-automotive applications—while eliminating proof-of-qualification paperwork necessary when using automotive parts,” said Sam Wang, vice president, TSC Products. “By adding 80- and 100-volt devices to our PerFET family, designers have even more options for increasing efficiency and reliability in their power switching applications.”

    Original – Taiwan Semiconductor

    Comments Off on Taiwan Semiconductor Expands PerFET MOSFET Family with High-Efficiency 80V and 100V Versions for Automotive and Industrial Power Applications
  • EPC Sets New Benchmark for 100V GaN Power Transistors with Latest Innovation

    EPC Sets New Benchmark for 100V GaN Power Transistors with Latest Innovation

    2 Min Read

    Efficient Power Conversion introduced the EPC2367a next-generation 100 V eGaN® FET that delivers superior performance, higher efficiency, and lower system costs for power conversion applications.

    Designed for 48 V intermediate voltage bus architectures, the EPC2367 significantly advances the performance of power systems by reducing power loss, increasing efficiency, and enabling more compact and cost-effective designs. This new device sets a benchmark in performance compared to both previous-generation GaN and traditional silicon MOSFET solutions.

    Key Advantages of the EPC2367

    • Ultra-Low On-Resistance (RDS(on)): 1.2 mΩ, a ~ 30% improvement over previous generation best-in-class devices
    • Smaller Footprint: 3.3 mm × 3.3 mm QFN package, reducing PCB space and enhancing thermal performance
    • Best-in-Class Switching Figures of Merit (FoM): EPC2367 outperforms competitors in hard and soft-switching applications, delivering superior efficiency and lower power losses
    • Enhanced Thermal Performance: Operates cooler under load, improving system reliability and enabling higher power densities
    • Outstanding Temperature Cycling Reliability: 4× the thermal cycling capability compared to previous GaN generations, ensuring robust long-term operation

    Superior In-Circuit Performance

    The EPC2367 has been rigorously tested in hard and soft-switching applications. Performance results demonstrate higher efficiency across the full power range, with significant power loss reductions. In a 1 MHz, 1.25 kW system, EPC2367 reduces power losses while achieving 1.25× the output power compared to previous GaN and Si MOSFET alternatives.

    The EPC2367 advances GaN technology with ultra-low on-resistance and superior thermal cycling, enabling engineers to boost efficiency and power density in AI servers, robotics, and automotive systems, said Alex Lidow, EPC CEO and co-founder.

    The EPC90164 development board is a half bridge featuring the EPC2367 GaN FET. It is designed for 80 V maximum operating voltage and 35 A maximum output current. The purpose of this board is to simplify the evaluation process of power systems designers to speed their product’s time to market. This 2” x 2” (50.8 mm x 50.8 mm) board is designed for optimal switching performance and contains all critical components for easy evaluation.

    Original – Efficient Power Conversion

    Comments Off on EPC Sets New Benchmark for 100V GaN Power Transistors with Latest Innovation
  • onsemi Unveils SiC-Based Intelligent Power Modules to Boost Efficiency and Cut System Costs

    onsemi Unveils SiC-Based Intelligent Power Modules to Boost Efficiency and Cut System Costs

    4 Min Read

    onsemi introduced the first generation of its 1200V silicon carbide (SiC) metal oxide semiconductor field-effect transistor (MOSFET) based SPM 31 intelligent power modules (IPMs). onsemi EliteSiC SPM 31 IPMs deliver the highest energy efficiency and power density in the smallest form factor compared to using Field Stop 7 IGBT technology, resulting in lower total system cost than any other leading solution on the market.

    Their improved thermal performance, reduced power losses and ability to support fast switching speeds makes these IPMs ideally suited for three-phase inverter drive applications such as electronically commutated (EC) fans in AI data centers, heat pumps, commercial HVAC systems, servo motors, robotics, variable frequency drives (VFDs), and industrial pumps and fans.

    The EliteSiC SPM 31 IPMs offer several current ratings from 40A to 70A. Complemented by onsemi’s IGBT SPM 31 IPM portfolio, covering low currents from 15A to 35A, onsemi now provides the industry’s broadest range of scalable and flexible integrated power module solutions in a small package. 

    In 2023, operations of residential and commercial buildings accounted for 27.6% of U.S. end-use energy consumption. As electrification and AI adoption grow, particularly with the construction of more AI data centers increasing energy demands, the need to reduce the energy consumption of applications in this sector is becoming more critical. Power semiconductors capable of efficiently converting electric power are the key in this transition to a low-carbon-emissions world.

    With the number and size of data centers growing, the demand for EC fans is expected to rise. These cooling fans maintain the ideal operating environment for all equipment in a data center and are essential for accurate, error-free data transmission. The SiC IPM ensures the EC fan operates reliably and at its highest efficiency.

    Like many other industrial applications such as compressor drives and pumps, EC fans require higher power density and efficiency than existing larger IGBT solutions. By switching to EliteSiC SPM 31 IPMs, customers can benefit from a smaller footprint, higher performance, and a simplified design due to high integration, resulting in shortened development time and lower total system cost in addition to reduced GHG emissions. For example, compared to a system solution that uses a current IGBT power integrated module (PIM) with power losses of 500W at 70% load, implementing highly efficient EliteSiC SPM 31 IPMs could reduce the annual energy consumption and cost per EC fan by 52%.

    The fully integrated EliteSiC SPM 31 IPM consists of an independent high side gate driver, low voltage integrated circuit (LVIC), six EliteSiC MOSFETs and a temperature sensor (voltage temperature sensor (VTS) or thermistor). The module is based on the industry-leading M3 SiC technology that shrinks die size and is optimized for hard-switching applications with improved short-circuit withstand time (SCWT) performance when used in the SPM 31 package, making them suitable for inverter motor drives for industrial use. The MOSFETs are configured in a three-phase bridge with separate source connections for the lower legs for maximum flexibility in the choice of control algorithm.

    In addition, the EliteSiC SPM 31 IPMs include the following benefits:

    • Low loss, short-circuit-rated M3 EliteSiC MOSFETs to prevent catastrophic equipment and component failures such as electric shock or fire.
    • Built-in under-voltage protection (UVP) to protect against damage to the device when voltage is low.
    • As the peer-to-peer product of FS7 IGBT SPM 31, customers can choose between various current ratings while using the same PCB board.
    • UL certified to meet national and international safety standards
    • Single-grounded power supply offering better safety, equipment protection and noise reduction.
    • Simplified design and reduced size of customer boards due to
      • Included controls for gate drivers and protections
      • Built-in bootstrap diodes (BSDs) and resistors (BSRs)
      • Internal boost diodes provided for high side gate boost drive
      • Integrated temperature sensor (VTS output by LVIC and/or thermistor)
      • Built-in high-speed high-voltage integrated circuit

    Original – onsemi

    Comments Off on onsemi Unveils SiC-Based Intelligent Power Modules to Boost Efficiency and Cut System Costs
  • Infineon Technologies Introduced a 2000 V CoolSiC™ Schottky Diode in a TO-247-2 Package

    Infineon Technologies Introduced a 2000 V CoolSiC™ Schottky Diode in a TO-247-2 Package

    2 Min Read

    Many industrial applications today are moving towards higher power levels with minimized power losses. One way to achieve this is to increase the DC link voltage. Infineon Technologies AG is addressing this market trend with the CoolSiC™ Schottky diode 2000 V G5 product family, the first discrete silicon carbide diodes with a breakdown voltage of 2000 V, introduced in September 2024.

    The product portfolio has now been expanded to include a Schottky diode in the TO-247-2 package, which is pin-compatible with most existing TO-247-2 packages. The product family fits perfectly for applications with DC link voltages up to 1500 V DC, making it ideal for solar and EV chargers. 

    The CoolSiC Schottky diode 2000 V G5 in the TO-247-2 package is available with current ratings ranging from 10 to 80 A. It allows developers to achieve higher power levels in their applications while reducing the component count by half compared to 1200 V solutions. This simplifies the overall design and facilitates a seamless transition from multi-level to two-level topologies.

    In addition, the Schottky diode in the TO-247-2 package incorporates .XT interconnection technology, which significantly reduces thermal resistance and impedance, thereby enhancing heat management. Humidity robustness has been validated through HV-H3TRB reliability testing. The diodes exhibit neither reverse recovery nor forward recovery, and feature a low forward voltage, ensuring improved system performance.

    The 2000 V diode family is a perfect match for the CoolSiC MOSFETs 2000 V in the TO-247Plus-4 HCC package that Infineon launched in the spring of 2024. In addition to the TO-247-2 package, the CoolSiC Schottky Diode 2000 V is also available in the TO-247PLUS-4 HCC package.

    Original – Infineon Technologies

    Comments Off on Infineon Technologies Introduced a 2000 V CoolSiC™ Schottky Diode in a TO-247-2 Package
  • NoMIS Power Announced Breakthrough in SiC Short-Circuit Withstand Time, Enhancing Reliability

    NoMIS Power Announced Breakthrough in SiC Short-Circuit Withstand Time, Enhancing Reliability

    4 Min Read

    NoMIS Power has announced a major breakthrough in improving the short-circuit withstand time (SCWT) of SiC MOSFETs. This innovation addresses one of the key challenges limiting the widespread adoption of SiC technology in high-power applications.

    Silicon carbide (SiC) devices have gained prominence in power electronics due to their high efficiency, fast switching, and superior thermal performance. However, their historically lower short-circuit robustness compared to silicon-based IGBTs has posed challenges for their use in high-voltage and high-reliability environments, such as industrial drives, electric vehicles, and grid applications. NoMIS Power’s latest advancement significantly extends the SCWT of SiC MOSFETs to a minimum of 5 µs (Fig. 1), compared to the current industry standard of 2-3 µs, with no deleterious effect on specific on-resistance (Ron,sp) (Fig. 2). This enhancement greatly improves reliability and unlocks new opportunities for system designers seeking to maximize performance while maintaining fault tolerance.

    Figure 1: Drain currents of the NoMIS Power SiC MOSFET and NoMIS Power SiC MOSFET with long SCWT under short-circuit conditions right before failure. Drain currents of the 1.2 kV, 80 mΩ SiC MOSFET (dark blue) and the long SCWT 1.2 kV, 80 mΩ SiC MOSFET (light blue) from NoMIS Power are compared. The measurement for short-circuit was conducted under the following conditions: Rg of 20 Ω, Vgs of 20 V, and a Vds of 800 V.

    By tuning the trade-off between Ron,sp and SCWT using NoMIS Power’s proprietary SiC MOSFET fabrication design and process flow, the performance shown in Fig. 1 & Fig. 2 was achieved; and can be similarly managed depending on the specific application. Complete optimization of SiC MOSFETs with long SCWT using this approach will allow NoMIS Power to further extend the SCWT while maintaining negligible impact on Ron,sp.

    Figure 2: Typical output characteristics of NoMIS Power 1.2 kV, 80 mQ SiC MOSFET and NoMIS Power 1.2 kV, 80 mQ SiC MOSFET with long SCWT showing no significant negative impact on on-resistance.

    “At NoMIS Power, we have focused extensively on device architecture engineering, leading to a significant advancement in SiC short-circuit withstand time,” said Woongje Sung, CTO at NoMIS Power. “We believe this achievement provides valuable advantages to the power electronics community, helping engineers integrate SiC solutions with greater confidence in applications where robustness is critical.” 

    NoMIS Power’s long SCWT devices are well-screened for latent defects and offer easier gate driver desaturation (dSat) design for high di/dt and dv/dt, enabling faster switching frequencies of up to hundreds of kHz. Initial test results demonstrate a 2X to 4X increase in short-circuit withstand time compared to existing SiC devices, positioning NoMIS Power’s technology as a frontrunner in the next generation of power semiconductors. Additionally, when coupled with packaging innovations that impact junction-to-case thermal capacitance, alongside novel thermal management techniques with high heat transfer coefficients, the overall SCWT of the SiC MOSFET can be further improved. 

    The impact of this innovation extends across multiple industries, including renewable energy, electric transportation, and high-power industrial applications. A longer short-circuit withstand time ensures rugged and reliable performance in critical applications, reinforcing the robustness of SiC-based power systems. For example, built-in redundancy of the SiC MOSFETs inside power converters, which impacts costs as well as power density, can be reduced. Furthermore, applications sensitive to electromagnetic inference, that cannot solely rely on digital control and sensing schemes to detect and act upon short-circuit events, will now be able to effectively utilize SiC MOSFETs with lower risk. As SiC adoption accelerates, NoMIS Power’s breakthrough will play a pivotal role in enhancing the reliability and safety of SiC-based power converters and systems.

    NoMIS Power is showcasing this breakthrough technology at APEC 2025, March 16-20, Atlanta, GA, Booth 548 along with its expanded range of SiC discretes and power modules.

    Original – NoMIS Power

    Comments Off on NoMIS Power Announced Breakthrough in SiC Short-Circuit Withstand Time, Enhancing Reliability