• Toshiba Unveils a Newly Developed Press Pack IEGT

    Toshiba Unveils a Newly Developed Press Pack IEGT

    1 Min Read

    Toshiba Electronic Devices & Storage Corporation has launched a newly developed press pack IEGT “ST3000GXH35A” with ratings of 4500 V/3000 A for use in high-voltage converters.

    The new product ST3000GXH35A has optimized N buffer layer design, thereby reducing approximately 400 V of turn-off-voltage oscillation peak-value (Vcp) at low current, compared with the Toshiba’s existing product. This helps simplify the snubber circuit.

    In addition, the measuring voltage of short-circuit pulse-width has been enhanced to 3400 V in response to applications requiring high voltage. This allows facilitating the short-circuit protection design of converters.

    Applications

    • DC power transmission
    • Static VAR compensator
    • Industrial motor controller

    Features

    • Maximum junction temperature rating: Tj (max)=150 °C
    • Approximately 400 V reduction in turn-off voltage oscillation peak-value (Vcp) at low current
    • Enhanced 3400 V of short-circuit pulse-width

    Original – Toshiba

    Comments Off on Toshiba Unveils a Newly Developed Press Pack IEGT
  • Vishay Intertechnology Introduced a New 30 V N-Channel TrenchFET Gen V Power MOSFET

    Vishay Intertechnology Introduced a New 30 V N-Channel TrenchFET Gen V Power MOSFET

    2 Min Read

    Vishay Intertechnology, Inc. introduced a versatile new 30 V n-channel TrenchFET® Gen V power MOSFET that delivers increased power density and enhanced thermal performance for industrial, computer, consumer, and telecom applications.

    Featuring source flip technology in the 3.3 mm by 3.3 mm PowerPAK® 1212-F package, the Vishay Siliconix SiSD5300DN provides best in class on-resistance of 0.71 mΩ at 10 V and on-resistance times gate charge — a critical figure of merit (FOM) for MOSFETs used in switching applications — of 42 mΩ*nC.

    Occupying the same footprint as the PowerPAK 1212-8S, the device released today offers 18 % lower on-resistance to increase power density, while its source flip technology reduces thermal resistance by 63 °C/W to 56 °C/W. In addition, the SiSD5300DN’s FOM represents a 35 % improvement over previous-generation devices, which translates into reduced conduction and switching losses to save energy in power conversion applications.

    PowerPAK1212-F source flip technology reverses the usual proportions of the ground and source pads, extending the area of the ground pad to provide a more efficient thermal dissipation path and thus promoting cooler operation. At the same time, the PowerPAK 1212-F minimizes the extent of the switching area, which helps to reduce the impact of trace noise.

    In the PowerPAK 1212-F package specifically, the source pad dimension increases by a factor of 10, from 0.36 mm2 to 4.13 mm2, enabling a commensurate improvement in thermal performance.  The PowerPAK1212-F’s center gate design also simplifies parallelization of multiple devices on a single-layer PCB.

    The source flip PowerPAK1212-F package of the SiSD5300DN is especially suitable for applications such as secondary rectification, active clamp battery management systems (BMS), buck and BLDC converters, OR-ing FETs, motor drives, and load switches. Typical end products include welding equipment and power tools; servers, edge devices, supercomputers, and tablets; lawnmowers and cleaning robots; and radio base stations.

    Original – Vishay Intertechnology

    Comments Off on Vishay Intertechnology Introduced a New 30 V N-Channel TrenchFET Gen V Power MOSFET
  • MCC Semi Unveils a New 1700V SiC MOSFET

    MCC Semi Unveils a New 1700V SiC MOSFET

    1 Min Read

    Micro Commercial Components unveiled 1700V SiC MOSFET – SICW400N170A-BP. Designed to elevate power conversion in a range of applications, this MOSFET features ultra-low on-resistance of only 400mΩ and high blocking voltage capability. SICW400N170A-BP SiC MOSFET enables high-speed switching while ensuring minimal conduction losses — essential requirements for optimizing frequency-dependent systems. 

    A standard, yet durable TO-247AB package delivers effective operation at a gate-source voltage of 20V with superior thermal stability and an operating junction temperature of +175°C. 

    This unwavering reliability in harsh conditions only adds to the component’s appeal and versatility for various high-voltage applications, including EV charging stations and renewable energy systems.

    Features & Benefits:
    • High blocking voltage capability (1700V)
    • Ultra-low on-resistance (400mΩ) enhances efficiency
    • Low capacitance enables faster switching
    • Excellent thermal stability
    • High operating junction temperature (to +175°C)
    • Standard TO-247AB package

    Original – Micro Commercial Components

    Comments Off on MCC Semi Unveils a New 1700V SiC MOSFET
  • MCC Introduced a New 1200V SiC MOSFET

    MCC Introduced a New 1200V SiC MOSFET

    1 Min Read

    Micro Commercial Components introduced its latest high-performance component — 1200V SiC N-channel MOSFET. With an impressively low on-resistance of just 28mΩ at a gate-source voltage of 18V, SICW028N120A4-BP is engineered to deliver in demanding high-power applications. 

    Housed in a TO-247-4 package, this MOSFET works well with the popular D2PAK 4-pin footprint and includes a Kelvin source pin for significant reduction in switching losses and a boost in energy efficiency. 

    A high operating junction temperature of up to +175°C and excellent thermal stability ensure this new SiC MOSFET will revolutionize power management in a diverse range of industrial and commercial devices that must perform in harsh conditions.

    Features & Benefits:

    • 1200V blocking voltage capability
    • 28mΩ low on-resistance
    • Kelvin source pin for enhanced switching
    • Avalanche ruggedness for durability
    • Excellent thermal stability
    • High operating junction temperature range (+175°C)
    • D2PAK-compatible 4-pin TO-247-4 package

    Original – Micro Commercial Components

    Comments Off on MCC Introduced a New 1200V SiC MOSFET
  • Innoscience Technology Introduced a New 100V Bi-directional VGaN IC

    Innoscience Technology Introduced a New 100V Bi-directional VGaN IC

    2 Min Read

    Innoscience Technology has launched a new 100V bi-directional member of the company’s VGaN IC family. The first family of VGaN devices rated 40V with wide on-resistance range (1.2mOhm – 12mOhm) have been successfully deployed in the USB OVP of mobile phones such as OPPO, OnePlus etc.

    The new 100V VGaN (INV100FQ030A) can be employed to achieve high efficiency in 48V or 60V battery management systems (BMS), as well as for high-side load switch applications in bidirectional converters, switching circuits in power systems, and other fields. Such device it is ideal in application such as home batteries, portable charging station, e-scooters, e-bikes etc.

    One VGaN replaces two back-to-back Si MOSFETs; they are connected with a common drain to achieve bidirectional switching of battery charging and discharging, further reducing on-resistance and loss significantly with respect to traditional Silicon solution. BOM count, PCB space and costs are also reduced accordingly.

    The INV100FQ030A 100V VGaN IC supports two-way pass-through, two-way cut-off and no-reverse-recovery modes of operation. Devices feature an extremely low gate charge of just 90nC, ultra-low dynamic on-resistance of 3.2mΩ and small, 4x6mm package size.

    Dr. Denis Marcon, General Manager, Innoscience Europe comments: “Innoscience’s continuous innovation and development of our core technology plus our 8-inch wafer GaN IDM model will accelerate the miniaturization of systems, making them more efficient and energy-saving.”

    Innoscience ‘s 100V GaN series products are in mass production in En-FCQFN (exposed top side cooling) and FCQFN packaging.

    Original – Innoscience Technology

    Comments Off on Innoscience Technology Introduced a New 100V Bi-directional VGaN IC
  • MCC Semi Unveiled Three New Super Fast Recovery Rectifiers

    MCC Semi Unveiled Three New Super Fast Recovery Rectifiers

    1 Min Read

    Micro Commercial Components unveiled the latest components with advanced semiconductor technology — three super fast recovery rectifiers. With a low profile and 600V capacity, MURBF1660C, MURBF1660CT, and MURBF3060CT are game-changers that deliver superior power in a small design. 

    Housed in a sleek TO-263AC package, these advanced products boast a minimal height of only 1.7mm and are compatible with the in-demand D2PAK footprint. Available in single or dual common cathode configurations, these super fast recovery rectifiers feature low leakage and forward currents of 16A or 30A. 

    These rectifiers minimize losses and maximize efficiency, making them ideal for reliable power management in industrial, consumer, and telecommunications applications. No matter which super fast recovery rectifier you choose from this collection, you’ll utilize ultra-fast recovery and unquestionable performance.

    Features & Benefits:

    • Low forward voltage
    • Low leakage current
    • Reduced power losses and increased efficiency
    • Low profile TO-263AC package
    • 1.7mm typical height
    • D2PAK footprint compatibility for maximum versatility
    • 600V working voltage
    • Forward currents of 16A and 30A per device
    • Single or dual common cathode configuration options

    Original – Micro Commercial Components

    Comments Off on MCC Semi Unveiled Three New Super Fast Recovery Rectifiers
  • Micro Commercial Components Released a New Two-in-One IGBT Module

    Micro Commercial Components Released a New Two-in-One IGBT Module

    1 Min Read

    Micro Commercial Components announced two-in-one IGBT module, MIF400R065C2TL-BP. Available in the C2 package, this new cutting-edge module combines dual IGBT devices and sets the standard for rugged performance. With 650V capability and an ultra-fast and soft recovery anti-parallel rectifier, this module delivers exceptional reliability in high-power applications.

    MCC’s IGBT module is a no-brainer for motor controls, uninterruptible power supplies, welding equipment, and other power-intensive applications, thanks to its ability to withstand junction temperatures up to 175°C and a high short-circuit capability of 6us.

    Designed with low VCE(sat), IGBT trench technology, and a 400A current rating, this component ensures low switching losses and low inductance while maximizing efficiency.

    Features & Benefits:

    • Low VCE(sat) with positive temperature coefficient
    • Trench IGBT technology
    • Low switching losses
    • High short-circuit capability (6us)
    • Ultra-fast and soft recovery anti-parallel forward diode (FWD)
    • Low inductance
    • Maximum junction temperature of 175°C
    • C2 package

    Original – Micro Commercial Components

    Comments Off on Micro Commercial Components Released a New Two-in-One IGBT Module
  • Diotec Semiconductor Introduced 650V Diodes in TO-220AC Package

    Diotec Semiconductor Introduced 650V Diodes in TO-220AC Package

    1 Min Read

    Diotec Semiconductor introduced SIT10C065 and SIT12C065 650 V single diodes in TO-220AC package. They offer 10 A and 12 A of average forward current. Both are ideally suited for high voltage / high frequency switching circuits, such as Power Factor Correction (PFC), high efficient solar inverters or data server power supplies.

    Both devices feature a high reverse voltage of 650 V combined with an extremely low “reverse recovery” capacitive charge and thus discharging time. That makes it ideally suited for all applications, where high voltage levels are switched at very high frequencies.

    Features

    • High reverse voltage
    • Almost zero switching losses
    • Low reverse leakage current
    • High efficiency high frequency switching
    • Single diodes in industry standard case outline

    Applications

    • Solar inverters
    • Data server power supplies
    • Power Factor Correction (PFC)

    Specifications

    • 10 A /12 A average forward current (IFAV)
    • 650 V repetitive reverse voltage (VRRM)
    • Typical forward voltage 1.7 V at 10 A and 175°C (VF)
    • Typical forward voltage 1.75 V at 12 A and 175°C (VF)
    • Typical reverse leakage 20 µA at 650 V and 175°C (IR)
    • Total capacitive charge 28 nC at 400 V, 10 A, 200 A/µs [QC)
    • TO-220AC case outline

    Original – Diotec Semiconductor

    Comments Off on Diotec Semiconductor Introduced 650V Diodes in TO-220AC Package
  • Leapers Semiconductor Introduced a New Family of SiC Power Modules

    Leapers Semiconductor Introduced a New Family of SiC Power Modules

    2 Min Read

    Leapers Semiconductor introduced a new 62 mm package SiC module product portfolio, achieving top-tier performance in the industry. The modules adopt the widely used 62 mm module half-bridge topology design in the industrial field, using high-quality mature chips. It boasts high voltage resistance, outstanding power density, high short-circuit tolerance, and a temperature coefficient 1.4 times better than industry standards.

    The 62 mm SiC modules include voltage resistance specifications of 1200V and 1700V, meeting the demands of high-power applications, especially suitable for applications in the smart grid, rail transit, energy storage, and power supplies.

    Because of the use of leading-edge chip solutions in the industry and the application of low thermal resistance and low stray capacitance packaging technology, along with the use of Si3N4 AMB low thermal resistance substrate, Leapers’ 62 mm SiC product excels in power density, short-circuit current withstand capability, thermal resistance, and other capabilities. Particularly under high junction temperature conditions, the module’s conduction and switching losses significantly outperform industry standards.

    Technical Features:

    • Voltage resistance options: 1200V or 1700V
    • Outstanding current output capability
    • Temperature coefficient index better than industry standards
    • Low losses, excellent short-circuit current withstand capability
    • Si3N4 AMB, low thermal resistance


    Currently, Leapers 62 mm SiC modules have undergone bench tests and received orders, involving applications such as grid inverters and auxiliary inverters for rail transit vehicles. Downstream customers include domestic power grid and overseas rail transit enterprises.

    Original – Leapers Semiconductor


    Comments Off on Leapers Semiconductor Introduced a New Family of SiC Power Modules
  • Xiaoqing Song from University of Arkansas Receives Grant to Research Gallium Oxide-Based Electric Vehicle Traction Inverters

    Xiaoqing Song from University of Arkansas Receives Grant to Research Gallium Oxide-Based Electric Vehicle Traction Inverters

    3 Min Read

    The National Science Foundation has given a $300,000 grant to Xiaoqing Song, an assistant professor in the Electrical Engineering and Computer Science Department, to support his research project focused on advancing high density and high-operation-temperature traction inverters. Song’s project explores the integration of gallium oxide packaged power modules to enhance the power density and temperature range of electric vehicles.

    Collaborating with the National Renewable Energy Laboratory, the project sets out to innovate power module packaging, establish reliable strategies for gallium oxide power devices and demonstrate the capabilities of a high density, high temperature traction inverter.

    “By eliminating technical barriers for gallium oxide device integration, this project will foster the development of next-generation, high density and high-operation-temperature power converters,” Song said.

    The traction inverter, responsible for converting stored direct current (DC) power into alternating current (AC) power to drive electric motors, stands to benefit significantly from gallium oxide technology. Song said, “Gallium oxide can make the traction inverter smaller, lighter, more efficient and capable of operating across a wider range of temperatures.

    “Gallium oxide has a larger band gap energy compared to conventional silicon and wide band gap semiconductors. It enables high breakdown electrical strength, low intrinsic carrier concentration and correspondingly high operation temperatures,” Song said.

    One challenge addressed in the project is the low thermal conductivity of gallium oxide, which hinders efficient heat removal. Song outlines the plan to develop advanced power module packaging techniques that enable low thermal resistance, low parasitic inductances and high-temperature operation capability.

    “National Renewable Energy Laboratory (NREL) has significant experience in power module simulation, fabrication and characterization, as well as world-class experimental and lab capabilities for evaluating and designing efficient and reliable power electronics systems. The PI will collaborate with them to design and develop a gallium oxide-based high density and operation-temperature traction inverter for automotive applications. This project will help establish a long-term partnership with NREL that can catalyze further research and development of ultra-wide bandgap power semiconductor devices,” Song said.

    Song shared that the collaboration with the National Renewable Energy Laboratory aims to design and develop a gallium oxide-based high density and high-operation-temperature traction inverter for automotive applications, fostering a long-term partnership that can drive further research in ultra-wide bandgap power semiconductor devices.

    “Other applications include power grids, data centers, renewable energy, space and defense, etc.,” Song added.

    The success of the project, he believes, will provide valuable insights into gallium oxide device modeling, packaging, gate driving, protection and application in power converters. These advancements are expected to catalyze progress in transport electrification and the deployment of gallium oxide technology in challenging environments.

    “The research achievements and experiences gained in the fellowship will sustain and promote the PI’s future multi-disciplinary research activities in semiconductor devices, multiphysics analysis, power module packaging and high performance power electronics. Other broader impacts also include the education and development of the next generation workforce in STEM (science, technology, engineering and math), the encouragement of more women and underrepresented minorities in electrical engineering, especially in the area of wide and ultra-wide bandgap semiconductor devices, power module packaging and power electronics with hands-on lab experiences,” Song said.

    Original – University of Arkansas

    Comments Off on Xiaoqing Song from University of Arkansas Receives Grant to Research Gallium Oxide-Based Electric Vehicle Traction Inverters