-
LATEST NEWS / PRODUCT & TECHNOLOGY2 Min Read
Nexperia introduced a new series of high-performance gate driver ICs designed for driving both high-side and low-side N-channel MOSFETs in a synchronous buck or half-bridge configuration. These devices deliver high current output and excellent dynamic performance, boosting efficiency and robustness in applications.
The automotive-qualified NGD4300-Q100 is ideal for electronic power steering and power converters, while the NGD4300 has been designed for use with DC-DC converters in consumer devices, servers and telecommunications equipment as well as for micro-inverters used in various industrial applications.
The floating high-side driver in these ICs can operate from bus voltages up to 120 V and use a bootstrap supply with an integrated diode, features which simplify overall system design and help to reduce PCB size. They can deliver up to 4 A (peak) source and 5 A of sink current to guarantee short rise and fall times even for heavy loads.
The gate driver has a low 13 ns delay and offers excellent channel-to-channel delay matching of only 1 ns. These delays are significantly lower than for similar competing gate drivers and help to minimize dead-time by maximizing switching duty-cycle. 4 ns rise and 3.5 ns (typical) fall times help to deliver higher efficiency and support high frequency and fast system control. These gate drivers accept input control signals complying with both TTL and CMOS logic levels.
“These devices are the first in our new portfolio of high-performance half-bridge gate drivers” according to Irene Deng, general manager of the IC solutions business group at Nexperia. “This release demonstrates how Nexperia is using process innovation to respond to the burgeoning demand for robust gate drivers that can increase power converter efficiency while also delivering smoother motor control in consumer, industrial and automotive applications.”
For superior robustness in power conversion and motor driving applications, these ICs are fabricated using a silicon-on-insulator (SOI) process. This allows the negative voltage tolerance of the HS pin to extend to -5 V, significantly reducing the risk of damage caused by system parasitic component and unexpected spikes. The NGD4300 and NGD4300-Q100 are available in a choice of DFN-8, SO-8 and HSO-8 packages to offer engineers the flexibility to trade-off between device size and thermal performance, depending on application requirements.
Original – Nexperia
-
LATEST NEWS / PRODUCT & TECHNOLOGY / SiC / WBG2 Min Read
ROHM has developed surface mount SiC Schottky barrier diodes (SBDs) that improve insulation resistance by increasing the creepage distance between terminals. The initial lineup includes eight models – SCS2xxxNHR – for automotive applications such as onboard chargers (OBCs), with plans to deploy eight models – SCS2xxxN – for industrial equipment such as FA devices and PV inverters in December 2024.
The rapidly expanding xEV market is driving the demand for power semiconductors, among them SiC SBDs, that provide low heat generation along with high-speed switching and high-voltage capabilities in applications such as onboard chargers. Additionally, manufacturers increasingly rely on compact surface mount devices (SMDs) compatible with automated assembly equipment to boost manufacturing efficiency. Compact SMDs tend to typically feature smaller creepage distances, fact that makes high-voltage tracking prevention a critical design challenge.
As leading SiC supplier, ROHM has been working to develop high-performance SiC SBDs that offer breakdown voltages suitable for high-voltage applications with ease of mounting. Adopting an optimized package shape, it achieves a minimum creepage distance of 5.1mm, improving insulation performance when contrasted with standard products.
The new products utilize an original design that removes the center pin previously located at the bottom of the package, extending the creepage distance to a minimum of 5.1mm, approx. 1.3 times greater than standard products. This minimizes the possibility of tracking (creepage discharge) between terminals, eliminating the need for insulation treatment through resin potting when surface mounting the device on circuit boards in high voltage applications. Additionally, the devices can be mounted on the same land pattern as standard and conventional TO-263 package products, allowing an easy replacement on existing circuit boards.
Two voltage ratings are offered, 650V and 1200V, supporting 400V systems commonly used in xEVs as well as higher voltage systems expected to gain wider adoption in the future. The automotive-grade SCS2xxxNHR are AEC-Q101 qualified, ensuring they meet the high reliability standards this application sector demands.
Going forward, ROHM will continue to develop high-voltage SBDs using SiC, contributing to low energy consumption and high efficiency requirements in automotive and industrial equipment by providing optimal power devices that meet market needs.
Original – ROHM
-
Power components are evolving to meet the increasing demands for higher efficiency, smaller size and greater performance in power electronic systems. To provide system designers with a wide range of power solutions, Microchip Technology announced its portfolio of IGBT 7 devices offered in different packages, multiple topologies, and current and voltage ranges.
Featuring increased power capability, lower power losses and compact device sizes, this new portfolio is designed to meet high-growth market segments such as sustainability, E-Mobility and data centers. These high-performance IGBT 7 devices are key building blocks for power applications in solar inverters, hydrogen ecosystems, commercial and agricultural vehicles and More Electric Aircraft (MEA).
Designers can select a suitable power solution based on their requirements. The IGBT 7 devices are offered in standard D3 and D4 62 mm packages, as well as SP6C, SP1F and SP6LI packages. Many configurations are available in the following topologies: three-level Neutral-Point Clamped (NPC), three-phase bridge, boost chopper, buck chopper, dual-common source, full-bridge, phase leg, single switch and T-type. Devices are available with voltages ranging from 1200V to 1700V and current ranging from 50A to 900A.
“The versatile IGBT 7 portfolio combines ease of use and cost efficiency with higher power density and reliability, offering our customers maximum flexibility. These products are designed for general industrial applications as well as specialized aerospace and defense applications,” said Leon Gross, corporate vice president of Microchip’s discrete product group. “Additionally, our power solutions can be integrated with Microchip’s broad range of FPGAs, microcontrollers (MCUs), microprocessors (MPUs), dsPiC® Digital Signal Controllers (DSCs) and analog devices to provide a comprehensive system solution from one supplier.”
The lower on-state IGBT voltage (Vce), improved antiparallel diode (lower Vf) and increased current capability can enable lower power losses, higher power density and higher system efficiency. The lower-inductance packages, combined with the higher overload capability at Tvj −175°C, make these devices excellent options for creating rugged and high-reliability aviation and defense applications—such as propulsion, actuation and power distribution—at a lower system cost.
For motor control applications where enhanced controllability of dv/dt is important, the IGBT 7 devices are designed to offer freewheeling softness for efficient, smooth and optimized driving of switches. These high-performance devices also aim to improve system reliability, reduce EMI and minimize voltage spikes.
Original – Microchip Technology
-
GaN / LATEST NEWS / PRODUCT & TECHNOLOGY / WBG2 Min Read
Cambridge GaN Devices (CGD) and Qorvo® have partnered to bring together industry-leading motor control and power efficiency technologies in the PAC5556A + ICeGaN® evaluation kit (EVK). This collaboration combines Qorvo’s high-performance BLDC/PMSM motor controller/driver and CGD’s easy-to-use ICeGaN ICs in a board that significantly improves motor control applications.
ANDREA BRICCONI | CHIEF MARKETING OFFICER, CGD
“By combining industry-leading solutions from our two technology-strong companies in this EVK, we are enabling the development of compact, energy-efficient systems with high power density. Unlike other GaN implementations, ICeGaN technology easily interfaces with Qorvo’s PAC5556A motor control IC for seamless high performance in BLDC and PMSM applications.”JEFF STRANG | GENERAL MANAGER, POWER MANAGEMENT BUSINESS UNIT, QORVO
“Wide-bandgap semiconductors like GaN and SiC are being integrated into motor control applications for the power density and efficiency advantages they offer. CGD’s ICeGaN technology delivers ease of use and reliability – two critical factors for motor control and drive designers. Customers are responding enthusiastically when they experience the power of GaN combined with our highly integrated PAC5556A 600V BLDC motor control solution.”By employing CGD’s latest-generation P2 ICs, the PAC5556AEVK2 evaluation kit with 240 mΩ ICeGaN achieves up to 400W peak performance without a heatsink, whilst the PAC5556AEVK3 with 55 mΩ ICeGaN hits 800W peak with minimal airflow cooling.
ICeGaN’s efficiency gains result in reduced power loss, increased power availability, and minimized heat dissipation, enabling smaller and more reliable systems. Because ICeGaN integrates essential current sense and Miller clamp elements, gate driver design is simplified and BOM costs are reduced. This makes the solution easy to implement and price-competitive, as well as high performance.
The PAC5556A + CGD GaN EVKs offer higher torque at low speeds and precise control, making them ideal for white goods, ceiling fans, refrigerators, compressors and pumps. Target markets include industrial and home automation, especially where compact, high-efficiency motor control systems are required. PAC5556AEVK2 and PAC5556AEVK3 are now available to order at Qorvo’s website.
Original – Cambridge GaN Devices
-
LATEST NEWS / PRODUCT & TECHNOLOGY / Si3 Min Read
ROHM has developed automotive-grade AEC-Q101 qualified 4th Generation 1200V IGBTs that combine class-leading low loss characteristics with high short-circuit resistance. This makes the devices ideal for vehicle electric compressors and HV heaters as well as industrial inverters.
The current lineup includes RGA80TRX2HR / RGA80TRX2EHR / RGA80TSX2HR / RGA80TSX2EHR – in two discrete package types (TO-247-4L and TO-247N), along with 11 bare chip variants – SG84xxWN – with plans to further expand the lineup in the future.
The increasing use of higher voltages in automotive systems and industrial equipment has led to a growing demand for power devices capable of handling high voltages in applications such as vehicle electric compressors, HV heaters, and inverters for industrial equipment.
At the same time, there is a strong push for high efficiency power devices to improve energy conservation, simplified cooling mechanisms, and smaller form factors for a decarbonized society. Automotive electrical components must also comply with automotive reliability standards, while power devices for inverter and heater circuits are required to provide current interruption capabilities during short circuits, necessitating high short-circuit tolerance.
In response, ROHM redesigned the device structure and adopted an appropriate package to develop new 4th Generation IGBTs suitable for high voltage by delivering industry-low loss characteristics with superior short-circuit tolerance.
These devices achieve an industry-leading short-circuit withstand time of 10µs (Tj=25°C) together with low switching and conduction losses while maintaining a high withstand voltage of 1200V and meeting automotive standards by reviewing the device structure, including the peripheral design. At the same time, the new TO-247-4L package products, which feature 4 terminals, can accommodate an effective voltage of 1100V in a ‘Pollution Degree 2 environment’ by ensuring adequate creepage distance between pins. This enables support for higher voltage applications than conventional products.
Implementing creepage distance measures on the device side alleviates the design burden for manufacturers. On top, the TO-247-4L package achieves high-speed switching by including a Kelvin emitter terminal, resulting in even lower losses. In fact, when comparing the efficiency of the new TO-247-4L packages with conventional and standard products in a 3-phase inverter, loss is reduced by about 24% compared to standard products and by 35% over conventional products – contributing to higher efficiency in drive applications.
ROHM will continue to expand its lineup of high-performance IGBTs that contribute to greater miniaturization and high efficiency drive in automotive and industrial equipment applications.
Original – ROHM
-
LATEST NEWS / PRODUCT & TECHNOLOGY / SiC / WBG
STMicroelectronics Released an Advanced Galvanically Isolated Gate Drivers for IGBTs and SiC MOSFETs
2 Min ReadSTMicroelectronics’ STGAP3S family of gate drivers for silicon-carbide (SiC) and IGBT power switches combines ST’s latest robust galvanic isolation technology with optimized desaturation protection and flexible Miller-clamp architecture.
Featuring reinforced capacitive galvanic isolation between the gate-driving channel and the low-voltage control and interface circuitry, the STGAP3S withstands 9.6kV transient isolation voltage (VIOTM) with 200V/ns common-mode transient immunity (CMTI). With its state-of-the-art isolation, the STGAP3S enhances reliability in motor drives for industrial applications such as air conditioning, factory automation, and home appliances. The new drivers are also used in power and energy applications including charging stations, energy storage systems, power-factor correction (PFC), DC/DC converters, and solar inverters.
The STGAP3S product family includes different options with 10A and 6A current capability, each of them available with differentiated Under Voltage Lock-Out (UVLO) and desaturation intervention thresholds. This helps designers select the best device to match the performance of their chosen SiC MOSFET or IGBT power switches.
The Desaturation protection implements an overload and short-circuit protection for the external power switch providing the possibility to adjust the turn-off strategy using an external resistor to maximize the protection turn-off speed while avoiding excessive overvoltage spikes. The undervoltage-lockout protection prevents turn-on with insufficient drive voltage.
The driver’s integrated Miller Clamp architecture provides a pre-driver for an external N-channel MOSFET. Designers can thus leverage flexibility to select a suitable intervention speed that prevents induced turn-on and avoids cross conduction.
The available device variants allow a choice of 10A sink/source and 6A sink/source drive-current capability for optimum performance with the chosen power switch with desaturation-detection and UVLO thresholds optimized for IGBT or SiC technology. The fault conditions of desaturation, UVLO and overtemperature protection are notified with two dedicated open drain diagnostic pins.
Original – STMicroelectronics
-
GaN / LATEST NEWS / PRODUCT & TECHNOLOGY / WBG1 Min Read
EPC Space announced the launch of HEMTKY product line.
A HEMTKY is a HEMT, High Electron Mobility Transistor, with an embedded Schottky diode. The presence of an antiparallel Schottky diode in the HEMTKY structure minimizes third quadrant conduction losses absent GaN HEMT synchronous drive. Notable advantages are:
- Predictable conduction losses, no reverse recovery charge
- Reduced system sensitivity to half-bridge deadtime variance
- Reduced negative voltage stress on gate drivers
For 500-unit quantities, engineering models are priced at $212 USD each, while space level units are priced at $315 USD each.
EPC Space provides revolutionary high-reliability radiation-hardened enhancement-mode gallium nitride power management solutions for space and other harsh environments. Radiation hardened GaN-based power devices address critical spaceborne environments for applications such as power supplies, motor drives, ion thrusters, and more. eGaN is a registered trademark of Efficient Power Conversion Corporation, Inc.
Original – EPC Space
-
LATEST NEWS / PRODUCT & TECHNOLOGY / SiC / WBG3 Min Read
Nexperia announced that it has entered into a strategic partnership with KOSTAL, a leading automotive supplier, which will enable it to produce wide bandgap (WBG) devices that more closely match the exacting requirements of automotive applications. Under the terms of this partnership, Nexperia will supply, develop, and manufacture WBG power electronics devices which will be designed-in and validated by Kostal. The collaboration will initially focus on the development of SiC MOSFETs in topside cooled (TSC) QDPAK packaging for onboard chargers (OBC) in electric vehicles (EV).
KOSTAL Automobil Elektrik, with over a century of experience, is a key player in the global automotive industry. Nearly one in every two cars worldwide is equipped with KOSTAL’s products, including more than 4.5 million onboard chargers, contributing to advancements in electromobility. Ranked among the top 100 automotive suppliers globally, KOSTAL is recognized for its innovative, reliable, and cost-optimized solutions. Its long-standing partnerships with customers and employees reflect the company’s commitment to quality and collaboration.
“Nexperia has been a trusted supplier of silicon components to KOSTAL for many years and is delighted to enter into this strategic partnership that will now extend to wide bandgap devices”, according to Katrin Feurle, Senior Director and Head of SiC Discretes & Modules. “KOSTAL will assist in validating our devices in its charging applications, thereby providing us with the type of invaluable ‘real-world’ data that will allow us to further enhance their performance”.
“KOSTAL is extending its’ strategic SiC supply portfolio to support our growth path towards 2030 with a special dedication on E-Mobility applications for onroad and offroad applications” states Dr. Georg Mohr, Executive VP Purchasing & Supply Chain of the KOSTAL Group. “Under this strategic partnership, which reinforces our long- standing customer-supplier relationship, KOSTAL will leverage Nexperia’s expertise in wide bandgap technology, particularly their SiC MOSFETs, which we believe are among the best in the market. By sharing our insights from real-world EV charging applications, we aim to contribute to the development of even more optimized and tailored SiC devices that meet the specific demands of our next-generation solutions.”
Nexperia is among the few companies that is offering a comprehensive range of WBG semiconductor technologies, including SiC diodes and MOSFETs, as well as GaN e-mode and d-mode devices, alongside its established silicon portfolio. With a strong commitment to expanding its commercial WBG offerings, Nexperia is focused on delivering the most suitable products to meet the needs of an increasing range of applications. The company’s focus is to support the responsible use of electrical energy through innovative solutions. Nexperia continues to develop technologies that address the growing demand for efficiency and sustainability in power management.
Original – Nexperia
-
GaN / LATEST NEWS / PRODUCT & TECHNOLOGY / WBG2 Min Read
Infineon Technologies AG announced the launch of a new family of high-voltage discretes, the CoolGaN™ Transistors 650 V G5, further strengthening its Gallium Nitride (GaN) portfolio. Target applications for this new product family range from consumer and industrial switched-mode power supply (SMPS) such as USB-C adapters and chargers, lighting, TV, data center and telecom rectifiers to renewable energy and motor drives in home appliances.
The latest CoolGaN generation is designed as a drop-in replacement for the CoolGaN Transistors 600 V G1, enabling rapid redesign of existing platforms. The new devices provide improved figures of merit to ensure competitive switching performance in focus applications.
Compared to key competitors and previous product families from Infineon, the CoolGaN Transistors 650 V G5 offer up to 50 percent lower energy stored in the output capacitance (E oss), up to 60 percent improved drain-source charge (Q oss) and up to 60 percent lower gate charge (Q g). Combined, these features result in excellent efficiencies in both hard- and soft-switching applications. This leads to a significant reduction in power loss compared to traditional silicon technology, ranging from 20 to 60 percent depending on the specific use case.
These benefits allow the devices to operate at high frequencies with minimal power loss, resulting in superior power density. The CoolGaN Transitors 650 V G5 enable SMPS applications to be smaller and lighter or to increase the output power range in a given form factor.
The new high-voltage transistor product family offers a wide range of R DS(on) package combinations. Ten R DS(on) classes are available in various SMD packages, such as ThinPAK 5×6, DFN 8×8 , TOLL and TOLT. All products are manufactured on high-performance 8-inch production lines in Villach (Austria) and Kulim (Malaysia). In the future, CoolGaN will transition to 12-inch production. This will enable Infineon to further expand its CoolGaN capacity and ensure a robust supply chain in the GaN power market, which is expected to reach $2 billion by 2029, according to Yole Group.
A demo featuring the CoolGaN Transistors 650 V G5 will be showcased at electronica 2024 in Munich from November 12 to 15 (hall C3, booth 502).
Original – Infineon Technologies
-
GaN / LATEST NEWS / PRODUCT & TECHNOLOGY / WBG2 Min Read
Power Integrations introduced a new member of its InnoMux™-2 family of single-stage, independently regulated multi-output offline power supply ICs. The new device features the industry’s first 1700 V gallium nitride switch, fabricated using the company’s proprietary PowiGaN™ technology.
The 1700 V rating further advances the state-of-the-art for GaN power devices, previously set by Power Integrations’ own 900 V and 1250 V devices, both launched in 2023. The 1700 V InnoMux-2 IC easily supports 1000 VDC nominal input voltage in a flyback configuration and achieves over 90 percent efficiency in applications requiring one, two or three supply voltages.
Each output is regulated within one percent accuracy, eliminating post regulators and further improving system efficiency by approximately ten percent. The new device replaces expensive silicon carbide (SiC) transistors in power supply applications such as automotive chargers, solar inverters, three-phase meters and a wide variety of industrial power systems.
Radu Barsan, vice president of technology at Power Integrations, said, “Our rapid pace of GaN development has delivered three world-first voltage ratings in a span of less than two years: 900 V, 1250 V and now 1700 V. Our new InnoMux-2 ICs combine 1700 V GaN and three other recent innovations: independent, accurate, multi-output regulation; FluxLink™, our secondary-side regulation (SSR) digital isolation communications technology; and zero voltage switching (ZVS) without an active-clamp, which all but eliminates switching losses.”
Original – Power Integrations