-
LATEST NEWS / PRODUCT & TECHNOLOGY2 Min Read
Infineon Technologies AG introduced new isolated gate driver ICs for electric vehicles to enhance its EiceDRIVER™ family. The devices are designed for the latest IGBT and SiC technologies. Furthermore, they support Infineon’s new HybridPACK™ Drive G2 Fusion module, the first plug’n’play power module that implements a combination of Infineon’s silicon and silicon carbide (SiC) technologies.
The pre-configured third-generation EiceDRIVER products, 1EDI302xAS (IGBT) and 1EDI303xAS (SiC/ Fusion), are AEC-qualified and ISO 26262-compliant, ideal for traction inverters in cost-effective and high-performant xEV platforms.
The devices 1EDI3025AS, 1EDI3026AS and 1EDI3035AS provide a strong output stage of 20 A and drive high-performance inverters of all power classes up to over 300 kW. The variants 1EDI3028AS and 1EDI3038AS with an output stage of 15 A are ideal for use in entry-level battery electric vehicle (BEV) and plug-in hybrid electric vehicle (PHEV) inverters as well as for the excitation circuit of externally excited synchronous machines (EESM). In addition, the devices are equipped with the new tunable soft-off feature, which provides excellent short-circuit performance to support the latest SiC and IGBT technologies.
Various monitoring functions, such as an integrated self-test for desaturation protection (DESAT) and overcurrent protection (OCP), improve the handling of latent system errors while the new primary and secondary safe-state interface enables versatile system safety concepts. In addition, a continuously sampling 12-bit delta-sigma ADC with integrated current source can read the voltage directly from temperature measurement diodes or an NTC.
The gate drivers also provide reinforced insulation according to VDE 0884-17:2021-10 to enable safe isolation following standardized qualification and production testing procedures. Furthermore, the compact package (PG-DSO-20) and excellent compatibility with the latest power stage technologies help customers to drive system integration and reduce design cycle times.
Original – Infineon Technologies
-
GaN / LATEST NEWS / PRODUCT & TECHNOLOGY / WBG2 Min Read
Efficient Power Conversion Corporation (EPC) announced the launch of the EPC91104, a high-performance 3-phase BLDC motor drive inverter reference design. This innovative design is ideal for powering compact, precision motors in humanoid robots, such as those used for wrist, finger, and toe movements.
The EPC91104 evaluation board uses the EPC23104 ePower™ Stage IC, offering a maximum RDS(on) of 11 mΩ and supporting DC bus voltages up to 80 V. The design supports up to 14 Apk steady-state and 20 Apk pulsed current, ensuring reliable performance for humanoid robot applications that require fine motor control and precision.
Key Features of the EPC91104
- Wide Voltage Range: Operates between 14 V and 80 V, accommodating a variety of battery systems
- Compact Design: Suitable for space-constrained robotics
- Advanced Protection: Includes overcurrent and input undervoltage protection, ensuring reliability in demanding applications
- Optimized Efficiency: Low-distortion switching reduces torque ripple and motor noise
Humanoid robots demand motors with precision and compactness, and the EPC91104 is specifically designed to meet those needs for applications like small joint actuation,
said Alex Lidow, CEO of EPCFor higher-current requirements, such as elbow and knee motors in humanoid robots, EPC offers the EPC9176 board in the same family. With enhanced current capacity, the EPC9176 complements the EPC91104 to cover a full range of motor drive applications in humanoid robotics.
The EPC91104 is compatible with controller boards from leading manufacturers, including Microchip, Texas Instruments, STMicroelectronics, and Renesas, offering engineers flexibility in development. It is equipped with comprehensive sensing and protection features, ensuring rapid prototyping and testing.
Original – Efficient Power Conversion
-
LATEST NEWS / PRODUCT & TECHNOLOGY / SiC / WBG3 Min Read
SemiQ Inc. announced a family of 1700 V SiC MOSFETs designed to meet the needs of medium-voltage high power conversion applications, such as photovoltaic and wind inverters, energy storage, EV and road-side charging, uninterruptable power supplies, and induction heating/welding.
The high-speed QSiC™ 1700 V switching planar D-MOSFETs enable more compact system designs at large scale, with higher power densities and lower system costs. They feature a reliable body diode, capable of operation at up to 175oC, with all components tested to beyond 1900 V, and UIL avalanche tested to 600 mJ.
The QSiC 1700 V devices are available in both a bare die form (GP2T030A170X), and as a 4-pin TO-247-4L-packaged discrete (GP2T030A170H) with drain, source, driver source and gate pins. Both are also available in an AEC-Q101 automotive qualified version (AS2T030A170X and AS2T030A170H).
The MOSFETs deliver low switching and conduction losses, low capacitance and feature a rugged gate oxide for long-term reliability, with 100 percent of components undergoing wafer-level burn in (WLBI) to screen out potentially weak oxide devices.
SemiQ has also announced a series of three modules as part of the family to simplify system design, this includes a standard-footprint 62 mm half-bridge module housed in an S3 package with an AIN insolated baseplate, as well as two SOT-227 packaged power modules.
The QSiC 1700 V series’ bare die MOSFET comes with an aluminum (Al) top side and nickel/silver (Ni/Ag) bottom side. Both it and the TO-247-4L packaged device have a power dissipation of 564 W, with a continuous drain current of 83 A (at 25oC, 61A at 100oC) and a pulsed drain current of 250 A (at 25oC). They also feature a gate threshold voltage of 2.7 V (at 25oC, 2.1 V at 125oC), an RDSON of 31 mΩ (at 25oC, 57 mΩ at 125oC), a low (10n A) gate source leakage current and a fast reverse recovery time (tRR) of 17 ns. The TO-247-4L package has a junction to case thermal resistance of 0.27oC per watt.
The two 4-pin power modules are housed in a 38.0 x 24.8 x 11.7 mm SOT-227 design and deliver an increased power dissipation of 652 W with an increased continuous drain current of 123 A (at 25oC – GCMX015A170S1E1) and 88 A (at 25oC GCMX030A170S1-E1). In addition to low switching losses, both modules have a low junction-to-case thermal resistance of 0.19oC and 0.36oC per watt and feature an easy-mount design for direct mounting of the isolated package to a heatsink.
The half-bridge module is housed in a 61.4 x 106.4 x 30.9 mm 9-pin S3 package and delivers a power dissipation of 2113 W with a continuous drain current of 397 A and a pulsed drain current of 700 A. In addition to low switching losses, the GCMX005A170S3B1-N module has a junction to case thermal resistance of 0.06oC per watt.
Original – SemiQ
-
LATEST NEWS / PRODUCT & TECHNOLOGY2 Min Read
MCC Semi introduced the first high-voltage MOSFET with Kelvin source pin in the compact DFN8080A package. Designed to help engineers balance costs and performance, 600V MSJL120N60FH leverages superjunction technology and an integrated FRED body diode to facilitate high-speed switching and recovery.
Its low gate charge and RDS(on) of only 100Ω (typ.) significantly improve switching speeds and reduce losses in a range of demanding applications. Featuring junction-to-case thermal resistance of 0.47K/W, this MOSFET assures reliable operation in high-temp environments, making it an intelligent choice for motor drives, solar inverters, industrial controllers, and power supplies.
With a height of less than 1mm, its low-profile DFN8080A package is well-suited for high-frequency applications where space is limited, and performance is mission-critical.
For engineers looking to boost efficiency and minimize losses, MSJL120N60FH boasts the perfect combination of features for high-voltage, space-constrained scenarios.
Features & Benefits:
- Superjunction technology: Enhances efficiency by reducing on-state resistance.
- Low on-resistance: Minimizes power dissipation at 100mΩ (typ.).
- Low conduction losses: Improves overall system efficiency.
- Low gate charge: Facilitates increased switching speeds.
- Kelvin source pin: Dramatically reduces switching losses while enhancing efficiency.
- Excellent thermal resistance: Junction-to-case thermal resistance of 0.47K/W ensures stable operation amid demanding conditions.
- Integrated FRED body diode: Reduces reverse recovery time for improved switching.
- High-speed switching: Optimal for high-frequency applications.
- Compact package size: DFN8080A package with a low-profile height of less than 1mm, perfect for space-constrained designs.
Original – Micro Commercial Components
-
LATEST NEWS / PRODUCT & TECHNOLOGY2 Min Read
Renesas Electronics Corporation introduced new 100V high-power N-Channel MOSFETs that deliver industry-leading high-current switching performance for applications such as motor control, battery management systems, power management and charging. End products include electric vehicles, e-bikes, charging stations, power tools, data centers, uninterruptable power supplies (UPS) and more.
Renesas has developed a new MOSFET wafer manufacturing process (REXFET-1) that enables the new devices to drastically reduce on-resistance (the resistance between the drain and source when the MOSFET is on) by 30 percent. The lower on-resistance contributes to much lower power loss in customer designs.
The REXFET-1 process also enables the new MOSFETs to offer a 10 percent reduction in Qg characteristics (the amount of charge needed to apply voltage to a gate), and a 40 percent reduction in Qgd (the amount of charge that needs to be injected into the gate during the “Miller Plateau” phase).
In addition to superior electrical characteristics, Renesas’ new RBA300N10EANS and RBA300N10EHPF MOSFETs are available in industry-standard TOLL and TOLG packages that are pin-compatible with devices from other manufacturers, and 50 percent smaller than traditional TO-263 packages. The TOLL package also offers wettable flanks for optical inspection.
“Renesas has been a leader in the MOSFET market for many years,” said Avi Kashyap, Vice President of Discrete Power Solutions BU at Renesas. “As we apply our manufacturing muscle to this market, we can provide customers with superior technical products, as well as assurance of supply from multiple high-volume facilities.”
Renesas has combined the new MOSFETs with numerous compatible devices from its portfolio to offer a wide array of Winning Combinations, including among others, 48V Mobility Platform and 3-in-1 Electric Vehicle Unit: Inverter, Onboard Charger, DC/DC Converter. These designs are technically vetted system architectures from mutually compatible devices that work together seamlessly to bring an optimized, low-risk design for faster time to market.
Renesas offers more than 400 Winning Combinations with a wide range of products from the Renesas portfolio to enable customers to speed up the design process and bring their products to market more quickly. They can be found at renesas.com/win.
Original – Renesas Electronics
-
GaN / LATEST NEWS / PRODUCT & TECHNOLOGY / WBG1 Min Read
Toyoda Gosei’s technology to enhance GaN substrates has been verified to improve power device performance. An article confirming it was published in Physica Status Solidi (RRL) – Rapid Research Letters, an international scientific journal for solid state physics.
Better power devices are indispensable for CO2 reduction in society, as they regulate electric power everywhere. Switching material from silicon to gallium nitride enables 90% energy-saving, superior devices, for which mass production of larger quality GaN substrates is requisite.
The Japanese Ministry of the Environment is leading a project for broad application of GaN power devices, for which Toyoda Gosei is providing technology to obtain ideal GaN crystals. One outcome of the project is a demonstrable improvement in power device performance with a GaN substrate fabricated on a GaN seed crystal that Toyoda Gosei jointly developed with Osaka University. Compared to power devices made on commercially-available substrates, power devices using these GaN substrates show higher performance in both power regulation capacity and yield ratio.
Toyoda Gosei will continue collaborating with government, universities, and other corporations for earlier dissemination of large quality GaN substrates.
Original – Toyoda Gosei
-
LATEST NEWS / PRODUCT & TECHNOLOGY3 Min Read
Littelfuse, Inc. announced the launch of its TPSMB Asymmetrical TVS Diode Series, the first-to-market asymmetrical transient voltage suppression (TVS) diode specifically designed for the protection of Silicon Carbide (SiC) MOSFET gate drivers in automotive applications.
This innovative product addresses the increasing demand for reliable overvoltage protection in next-generation electric vehicle (EV) systems, delivering a compact, single-component solution that replaces multiple Zener diodes or TVS components traditionally used for gate driver protection. View the video.
The TPSMB Asymmetrical TVS Diode Series provides superior protection for SiC MOSFET gate drivers, which are prone to overvoltage events due to faster switching speeds compared to traditional silicon-based MOSFETs or IGBTs. The unique asymmetrical design of the TPSMB Series supports SiC MOSFETs’ differing positive and negative gate driver voltage ratings, ensuring enhanced performance in a variety of demanding automotive power applications where SiC MOSFETs are used, including:
- Onboard chargers (OBCs)
- EV traction Inverters
- I/O interfaces
- Vcc buses
These applications demand high-performance overvoltage protection (OVP) for SiC MOSFET gate drivers to ensure optimal performance, longevity, and efficiency.
Charlie Cai, Director of Product Management, Protection Business, Littelfuse, emphasizes the value this product brings to automotive engineers: “The TPSMB Asymmetrical TVS Diode Series offers an innovative solution for SiC MOSFET gate driver protection, eliminating the need for multiple components and simplifying the design process for engineers. Its compact, reliable design ensures that critical automotive power systems are safeguarded against overvoltage events, supporting the continued advancement of electric vehicles and other high-performance applications.”
The TPSMB Asymmetrical Series Surface-Mount TVS Diode offers the following key features and benefits:
- A Single-Component SiC MOSFET Gate Driver Protection: Eliminates the need for multiple Zener or TVS diodes, streamlining design and reducing component count.
- Asymmetrical Gate Driver Voltage Protection: Designed to protect SiC MOSFET gate drivers, which require different negative and positive voltage ratings.
- Compact Design: Available in a DO-214AA (SMB J-Bend) package, the series is ideal for space-constrained automotive designs.
- Automotive-Grade Quality: AEC-Q101-qualified, ensuring the highest reliability for automotive applications.
- High Power Dissipation: 600W peak pulse power dissipation (10×1000μs waveform) offers robust protection against transient overvoltage events.
- Low Clamping Voltage: VC < 10 V @ 30 A (8/20 µs) for optimal negative gate drive protection.
- Wide Frequency Stability: Stable capacitance across a wide operating frequency range, up to 2 MHz, making it ideal for SiC MOSFET applications.
- Compatible with Leading SiC MOSFETs: Suited for use with Littelfuse and other market-leading automotive SiC MOSFETs.
Original – Littelfuse