• Leapers Semiconductor Delivers New Family of 1,4kV SiC Power Modules

    Leapers Semiconductor Delivers New Family of 1,4kV SiC Power Modules

    2 Min Read

    Today some applications tend to increase bus voltage, and using 1200V SiC power modules can no longer correspond to voltage requirements. Using 1700V SiC devices can solve the problem, but it comes with a price.

    Leapers Semiconductor announced a new series of 1400V SiC power modules in already familiar E0 and ED3S packages. They are the perfect solution to the mentioned problem, providing great performance at affordable price.

    At the moment the new series 1400V SiC modules come in Half-Bridge, H-Bridge, and Boost topologies.

    Leapers Semiconductor new SiC product family features:

    –       1,4kV voltage
    –       50 – 600A current
    –       3,2 – 40 mOhm Rds(on)
    –       Epoxy resin
    –       Si3N4 AMB substrate
    –       Low thermal resistance
    –       Low switching losses

    First batches of 1400V SiC power modules successfully passed field tests by the end customers and soon will be mass used in:

    –       DC fast chargers
    –       Commercial EVs
    –       Power supplies for production of hydrogen
    –       DC/DC converters

    Original – Leapers Semiconductor

    Comments Off on Leapers Semiconductor Delivers New Family of 1,4kV SiC Power Modules
  • Solitron Devices Introduced 1200V Ultra-low RDS(on) Hermetically Sealed SiC Power Module

    Solitron Devices Introduced 1200V Ultra-low RDS(on) Hermetically Sealed SiC Power Module

    2 Min Read

    Solitron Devices announced the introduction of the SD11487, the industry’s first hermetically sealed Silicon Carbide (SiC) Power Module for high reliability applications.   

    With a unique hermetic packaging format, the 51mm x 30mm x 8mm outline is the smallest hermetically sealed high reliability, high voltage, half-bridge on the market. The integrated format maximizes power density while minimizing loop inductance. 60 mil pins for the power output stage are isolated on one side of the package to allow simple power bussing while 30 mil pins are on the opposite side for control signals. 

    The SD11487 is a half bridge configuration with two 1200V 12mΩ SiC MOSFETs.  Also included in the module are two freewheeling 1200V SiC Schottky diodes in parallel with the MOSFETs and an integrated NTC temperature sensor. Continuous drain current is specified at 95A.

    With operating temperatures of -55°C to 175°C, the SD11487 is designed for the most demanding applications such as down hole exploration; space; and avionics. The hermetically sealed copper package combined with the Alumina Nitride direct bond copper substrate provide excellent thermal conductivity as well as case isolation. The integrated temperature sensing enables high level temperature protection. 

    Silicon Carbide provides excellent switching performance versus the best-in-class silicon MOSFETs and IGBTs with minimal variation versus temperature. Higher efficiency levels than silicon due to significantly lower energy loss and reverse charge results in more switching power and less energy required in the switch-on and switch-off phase. Combined with high switching frequencies this translates to smaller magnetics significantly reducing system weight and size.

    Original – Solitron Devices

    Comments Off on Solitron Devices Introduced 1200V Ultra-low RDS(on) Hermetically Sealed SiC Power Module
  • Toshiba Launches 3,3kV800A Chopper SiC MOSFET Modules Using 3rd Generation Chips

    Toshiba Launches 3,3kV/800A Chopper SiC MOSFET Modules Using 3rd Generation Chips

    2 Min Read

    Toshiba Electronic Devices & Storage Corporation has launched chopper SiC MOSFET modules “MG800FXF1ZMS3” and ”MG800FZF1JMS3” with ratings of 3300 V and 800 A using 3rd generation silicon carbide (SiC) MOSFET and SBD chips for industrial equipment and has expanded its lineup.

    The new products MG800FXF1ZMS3 and MG800FXF1JMS3 adopt an iXPLV package with Ag sintering internal bonding technology and high compatibility with mounting. These offers low conduction loss with low drain-source on-voltage (sense) of 1.3 V (typ.), and also offers low switching loss with low turn-on switching loss of 230 mJ (typ.) and low turn-off switching loss of 230 mJ (typ.). These contribute to reducing the power loss of equipment and the size of cooling device. 

    The lineup of Toshiba’s MOSFET modules of iXPLV package has three products, including existing product MG800FXF2YMS3 (3300 V / 800 A / Dual SiC MOSFET module.) This provides a wide range of product selection. This can be used in 2-level inverters, buck/boost converters and 3-level inverters.

    Toshiba will continue to meet the market needs for high efficiency and the downsizing of industrial equipment.

    Applications

    Industrial equipment

    • Inverters and converters for railway vehicles
    • Renewable energy power generation systems
    • Motor control equipment for industrial equipment, etc.

    Features

    • Low drain-source on-voltage (sense):
      VDS(on)sense=1.3 V (typ.) (ID=800 A, VGS=+20 V, Tch=25 °C)
    • Low turn-on switching loss:
      Eon=230 mJ (typ.) (VDD=1800 V, ID=800 A, Tch=175 °C)
    • Low turn-off switching loss:
      Eoff=230 mJ (typ.) (VDD=1800 V, ID=800 A, Tch=175 °C)

    Original – Toshiba

    Comments Off on Toshiba Launches 3,3kV/800A Chopper SiC MOSFET Modules Using 3rd Generation Chips
  • Infineon Launches New CoolMOS™ S7T Family with Integrated Temperature Sensor 

    Infineon Launches New CoolMOS™ S7T Family with Integrated Temperature Sensor 

    2 Min Read

    Infineon Technologies AG launches its new CoolMOS™ S7T product family with an integrated temperature sensor to improve the accuracy of junction temperature sensing. The integration of these products has a positive impact on the durability, safety, and efficiency of many electronic applications. The CoolMOS S7T is best suited for solid-state relay (SSR) applications for enhanced performance and reliability due to its superior R DS(on) and the highly accurate, embedded sensor.

    Since SSRs are fundamental components in various electronic devices, customers can benefit in many ways from a superjunction MOSFET with an integrated sensor in the same package. Infineon’s innovative approach improves the relay’s performance and ensures reliable operation even under overload conditions. The integrated temperature sensor provides up to 40 percent greater accuracy and ten times faster response time than a standard independent on-board sensor located at the drain. Additionally, the monitoring process can be performed individually within a multi-device system for improved reliability.

    The CoolMOS S7T enables optimal utilization of the power transistor, resulting in enhanced performance and precise control of the output stage. Compared to electromechanical relays, the total power dissipation can be improved up to two times, while current solid state triac solutions are more than 5 times less efficient. Improved efficiency and the ability to handle higher loads help in reducing power consumption and energy costs.

    Unique output stage performance, coupled with a significant overcurrent threshold, bolster relay reliability and minimizes the risk of failure and downtime. The rugged switching solution also ensures safer operation. As a result of the MOSFETs increased robustness, the life of the relay is improved, leading to less frequent replacement. Ultimately, all of these benefits translate into lower maintenance costs.

    Original – Infineon Technologies

    Comments Off on Infineon Launches New CoolMOS™ S7T Family with Integrated Temperature Sensor 
  • Vincotech Introduced a New Full SiC Module

    Vincotech Introduced a New Full SiC Module

    1 Min Read

    Efficiency is a big deal for heat pumps and HVAC systems that require higher power from a smaller footprint. The new Vincotech power module 1200V PIM+PFC resolves that contradiction by taking efficiency to a whole other level. Featuring a 3-phase ANPFC and an inverter stage, it enables your engineers to design more deeply integrated systems that drive costs down.

    Main Benefits

    • All-in-one solution: 3-phase PFC with inverter stage in a compact flow1 housing allows for more compact designs and higher power density
    • AN-PFC with SiC MOSFETs and SiC diodes for up to 200 kHz: remarkably efficient topology brings down system costs
    • Thin Al2O3 substrate facilitates overall thermal design
    • Inverter stage featuring SiC MOSFETs for high-frequency switching
    • Integrated thermal sensor simplifies temperature measurement

    Applications

    • Embedded Drives
    • HVAC, Heatpumps

    Original – Vincotech

    Comments Off on Vincotech Introduced a New Full SiC Module
  • STMicroelectronics Extends MasterGaN Family

    STMicroelectronics Extends MasterGaN Family

    2 Min Read

    STMicroelectronics’ MasterGaN1L and MasterGaN4L introduce the next generation of integrated gallium-nitride (GaN) bridge devices that simplify power-supply design leveraging wide-bandgap technology to achieve the latest ecodesign targets.

    ST’s MasterGaN family combines 650V GaN high electron-mobility transistors (HEMT) with optimized gate drivers, system protection, and an integrated bootstrap diode that helps power the device at startup. Integrating these features saves designers tackling the complex gate-drive requirements of GaN transistors. Housed in a compact power package, the devices also enhance reliability, cut the bill of materials, and ease circuit layout.

    The latest devices contain two GaN HEMTs connected in half-bridge configuration. The arrangement is suitable for building switched-mode power supplies, adapters, and chargers with active-clamp flyback, active-clamp forward, and resonant converter topologies.

    The MasterGaN1L and MasterGaN4L are pin compatible with MasterGaN1 and MasterGaN4 respectively. Compared to the earlier devices, they have a newly optimized turn-on delay that allows working at higher frequency and higher efficiency with low load, especially in resonant topologies.

    The inputs accept signal voltages from 3.3V to 15V, with hysteresis and pull-down that facilitate connecting directly to a controlling device such as a microcontroller, DSP, or Hall-effect sensors. A dedicated shutdown pin helps designers save system power and the two GaN HEMTs have accurately matched timing with an interlocking circuit to prevent cross-conduction conditions.

    The MasterGaN1L HEMTs have 150mΩ RDS(on) and 10A rated current, for use in applications up to 500W. Consuming just 20mW no-load power, and enabling high conversion efficiency, they enable designers to meet stringent industry targets for standby power and average efficiency. The MasterGaN4L HEMTs target applications up to 200W, with 225mΩ RDS(on) and rated current of 6.5A.

    The EVLMG1LPBRDR1 and EVLMG4LPWRBR1 demonstration boards are available to help evaluate the features of each device. These boards contain a GaN-based half-bridge power module fine-tuned to work in an LLC application. They help quickly create new topologies leveraging the MasterGaN1L and MasterGaN4L devices without needing a complete PCB design.

    Original – STMicroelectronics

    Comments Off on STMicroelectronics Extends MasterGaN Family
  • Texas Instruments Expands Its GaN Portfolio

    Texas Instruments Expands Its GaN Portfolio

    3 Min Read

    Texas Instruments announced the expansion of its low-power gallium nitride (GaN) portfolio, designed to help improve power density, maximize system efficiency, and shrink the size of AC/DC consumer power electronics and industrial systems. TI’s overall portfolio of GaN field-effect transistors (FETs) with integrated gate drivers addresses common thermal design challenges, keeping adapters cooler while pushing more power in a smaller footprint.

    “Today’s consumers want smaller, lighter and more portable power adapters that also provide fast, energy-efficient charging,” said Kannan Soundarapandian, general manager of High Voltage Power at TI.

    “With the expansion of our portfolio, designers can bring the power-density benefits of low-power GaN technology to more applications that consumers use every day, such as mobile phone and laptop adapters, TV power-supply units, and USB wall outlets. Additionally, TI’s portfolio also addresses the growing demand for high efficiency and compact designs in industrial systems such as power tools and server auxiliary power supplies.”

    The new portfolio of GaN FETs with integrated gate drivers, which includes the LMG3622LMG3624 and LMG3626, offers the industry’s most accurate integrated current sensing. This functionality helps designers achieve maximum efficiency by eliminating the need for an external shunt resistor and reducing associated power losses by as much as 94% when compared to traditional current-sensing circuits used with discrete GaN and silicon FETs.

    TI’s GaN FETs with integrated gate drivers enable faster switching speeds, which helps keep adapters from overheating. Designers can reach up to 94% system efficiency for <75-W AC/DC applications or above 95% system efficiency for >75-W AC/DC applications. The new devices help designers reduce the solution size of a typical 67-W power adapter by as much as 50% compared to silicon-based solutions.

    The portfolio is also optimized for the most common topologies in AC/DC power conversion, such as quasi-resonant flyback, asymmetrical half bridge flyback, inductor-inductor-converter, totem-pole power factor correction and active clamp flyback.

    To learn more about the benefits of TI GaN for the most common AC/DC topologies, read the technical article, “The benefits of low-power GaN in common AC/DC power topologies.”

    TI has a long history of globally owned, regionally diverse internal manufacturing operations, including wafer fabs, assembly and test factories, and bump and probe facilities across 15 worldwide sites. TI has been investing in manufacturing GaN technology for more than 10 years.

    With plans to manufacture more than 90% of its products internally by 2030, TI has the ability to provide customers with dependable capacity for decades to come.

    Original – Texas Instruments

    Comments Off on Texas Instruments Expands Its GaN Portfolio
  • Nexperia Announced Its First SiC MOSFETs in 3-pin TO-247 Package

    Nexperia Announced Its First SiC MOSFETs in 3-pin TO-247 Package

    3 Min Read

    Nexperia announced its first silicon carbide (SiC) MOSFETs with the release of two 1200 V discrete devices in 3-pin TO-247 packaging with RDS(on) values of 40 mΩ and 80 mΩ. NSF040120L3A0 and NSF080120L3A0 are the first in a series of planned releases which will see Nexperia’s SiC MOSFET portfolio quickly expand to include devices with a variety of RDS(on) ​​​​​​​ values in a choice of through-hole and surface mounted packages.

    This release addresses the market demand for the increased availability of high performance SiC MOSFETs in industrial applications including electric vehicle (EV) charging piles, uninterruptible power supplies (UPS) and inverters for solar and energy storage systems (ESS).

    “With these inaugural products, Nexperia and Mitsubishi Electric wanted to bring true innovation to a market that has been crying out for more wide-bandgap device suppliers”, according to Katrin Feurle, Senior Director & Head of Product Group SiC at Nexperia. “Nexperia can now offer SiC MOSFET devices which offer best-in-class performance across several parameters, including high RDS(on) temperature stability, low body diode voltage drop, tight threshold voltage specification as well as a very well-balanced gate charge ratio making the device safe against parasitic turn on. This is the opening chapter in our commitment to producing the highest quality SiC MOSFETs in our partnership with Mitsubishi Electric. Together we will undoubtedly push the boundaries of SiC device performance over the coming years”.

    “Together with Nexperia, we’re thrilled to introduce these new SiC MOSFETs as the first product of our partnership”, says Toru Iwagami, Senior General Manger, Power Device Works, Semiconductor & Device Group in Mitsubishi Electric. “Mitsubishi Electric has accumulated superior expertise of SiC power semiconductors, and our devices deliver a unique balance of characteristics.”

    RDS(on) is a critical performance parameter for SiC MOSFETs as it impacts conduction power losses. Nexperia identified this as a limiting factor in the performance of many currently available SiC devices and used its innovative process technology to ensure its new SiC MOSFETs offer industry-leading temperature stability, with the nominal value of RDS(on) increasing by only 38% over an operating temperature range from 25°C to 175°C. Unlike other many currently available SiC devices in the market.

    Nexperia’s SiC MOSFETs also exhibit the very low total gate charge (QG), which brings the advantage of lower gate drive losses. Furthermore, Nexperia balanced gate charge to have an exceptionally low ratio of QGD to QGS, a characteristic which increases device immunity against parasitic turn-on. 

    Together with the positive temperature coefficient of SiC MOSFETs, Nexperia’s SiC MOSFETs offers also ultra-low spread in device-to device threshold voltage, VGS(th), which allows very well-balanced current-carrying performance under static and dynamic conditions when devices are operated in parallel. Furthermore, low body diode forward voltage (VSD) is a parameter which increases device robustness and efficiency, while also relaxing the dead-time requirement for asynchronous rectification and free wheel operation. 

    Nexperia is also planning the future release of automotive grade MOSFETs. The NSF040120L3A0 and NSF080120L3A0 are available in production quantities now. Please contact Nexperia sales representatives for samples of the full SiC MOSFET offering.

    Original – Nexperia

    Comments Off on Nexperia Announced Its First SiC MOSFETs in 3-pin TO-247 Package
  • Infineon Introduced a New OptiMOS™ 7 Power MOSFET

    Infineon Introduced a New OptiMOS™ 7 Power MOSFET

    2 Min Read

    The ever-increasing power demand in data centers and computing applications requires advancements in power efficiency and compact power supply design. Infineon Technologies AG responds to trends on the system level by introducing its new OptiMOS™ 7 family, industry’s first 15 V trench power MOSFET technology. The OptiMOS 7 15 V series primarily targets optimized DC-DC conversion for servers, computing, datacenter, and artificial intelligence applications.

    The product portfolio includes the latest PQFN 3.3 x 3.3 mm² Source-Down, with bottom- and dual-side cooling variants in standard- and center-gate footprints. The portfolio also includes a robust PQFN 2 x 2 mm² variant with a reinforced clip. The OptiMOS 7 15 V technology is specifically tailored for DC-DC conversions with low output voltages, particularly in server and computing environments. This advancement aligns with emerging shifts towards high ratio DC-DC conversion in data-center power distribution.

    Compared to the established OptiMOS5 25 V, the new OptiMOS 7 15 V achieves a reduction of R DS(on) and FOMQ g by ~30 percent, and FOMQ OSS by ~50 percent by lowering the breakdown voltage. The PQFN 3.3 x 3.3 mm² Source-Down package variants provide a more versatile and effective PCB-design. Furthermore, the PQFN 2 x 2 mm² package provides a pulsed current capability higher than 500 A and a typical R thJC of 1.6 K/W.

    By minimizing conduction and switching losses and incorporating advanced packaging technology, thermal management becomes easy and effective, setting new benchmarks both for power density and overall efficiency.

    Original – Infineon Technologies

    Comments Off on Infineon Introduced a New OptiMOS™ 7 Power MOSFET
  • Infineon Adds a QDPAK Package to Its 650 V CoolMOS CFD7A Family

    Infineon Adds a QDPAK Package to Its 650 V CoolMOS CFD7A Family

    3 Min Read

    The accelerated transition to electric vehicles has led to significant innovations in charging systems that demand more cost-efficient and high performing power electronics. Addressing this, Infineon Technologies AG expands its 650 V CoolMOS™ CFD7A portfolio by introducing the QDPAK package.

    This package family is designed to provide equivalent thermal capabilities with improved electrical performance over the well-known TO247 THD devices, thus enabling efficient energy utilization in onboard chargers and DC-DC converters.

    Efficient and powerful electric vehicle charging systems help reduce charging times and vehicle weight, increasing design flexibility and reduce the total cost of ownership of the vehicle. This new addition complements the existing CoolMOS CFD7A series, offering versatility with top-side and bottom-side cooled packages. The QDPAK TSC (top side cooled), enables designers to achieve higher power densities and optimal PCB space utilization.

    The 650 V CoolMOS CFD7A offers several important features for reliable operation in high-voltage applications. Thanks to its reduced parasitic source inductance, the device can minimize electromagnetic interference (EMI), ensuring clear signals and consistent performance.

    The Kelvin source pin also provides improved precision for current sensing, ensuring accurate measurements even in challenging conditions. With a creepage distance suitable for high voltage applications, as well as high current capability and high power dissipation (P tot) of up to 694 W at 25°C, it is a versatile and powerful device for a wide range of high-voltage applications.

    New system designs using 650 V CoolMOS CFD7A in QDPAK TSC will maximize PCB space use, doubling power density and enhancing thermal management via substrate thermal decoupling. This approach simplifies assembly, eliminates board stacking and reduces the need for connectors, thereby lowering system costs. The power switch reduces thermal resistance by up to 35 percent, providing high power dissipation that outperforms standard cooling solutions.

    This feature overcomes the thermal limitations of bottom side cooled SMD designs using FR4 PCBs, resulting in a significant boost in system performance. The optimized power loop design locates drivers near the power switch, improving reliability by reducing stray inductance and chip temperatures. Overall, these features contribute to a cost-effective, robust, and efficient system ideal for modern power needs.

    As announced in February 2023, the QDPAK TSC package has been registered as a JEDEC standard for high-power applications, helping to establish a broad adoption of TSC in new designs with one standard package design and footprint. To further to accelerate this transition, Infineon will also release additional Automotive Qualified devices in QDPAK TSC for onboard chargers and DC-DC converters in 2024, such as 750 V and 1200 V CoolSiC™ devices.

    Original – Infineon Technologies

    Comments Off on Infineon Adds a QDPAK Package to Its 650 V CoolMOS CFD7A Family