• Toshiba Released a 400 V Voltage Switching Diode

    Toshiba Released a 400 V Switching Diode

    2 Min Read

    Toshiba Electronic Devices & Storage Corporation has launched the product “HN1D05FE”, a 400 V voltage switching diode. The new product “HN1D05FE” is suitable for applications that require high voltage characteristics such as commercial AC power supply circuits and AC-DC converter circuits for LED illumination. With a 400 V reverse voltage rating, HN1D05FE is suitable for power supply circuits below 200 V, as well as reverse-current protection and surge protection, and more.

    In addition, the new product is housed in a SOT-563 package (Toshiba package name: ES6, 1.6 mm × 1.6 mm (typ.), t=0.55 mm (typ.)) to achieve high voltage characteristics in a small size.
    Furthermore, built-in two switching diodes allow reducing the number of devices in circuits which use multiple devices.

    Moreover, the package size is reduced by approximately 70 % and the package height is as low as 50 % compared with the SOT-24 package (Toshiba package name: SMQ, 2.9 mm × 2.9 mm (typ.), t=1.1 mm (typ.)) of Toshiba’s existing product 1SS399. This helps to downsizing and thinning of the set.

    Applications

    • Consumer equipment (home appliances, OA equipment, PC, etc.)
    • Industrial equipment (FA equipment, PV, semiconductor-manufacturing equipment, etc.)

    Features

    • High reverse voltage : VR = 400 V
    • Low leakage current : IR = 0.1 μA (max) (VR = 400 V)
    • Small and thin SOT-563 Package : Toshiba Package Name : ES6 (1.6 mm × 1.6 mm (typ.), t = 0.55 mm (typ.))

    Original – Toshiba

    Comments Off on Toshiba Released a 400 V Switching Diode
  • Infineon Expands Portfolio of Its CoolSiC 1.2kV and 2kV MOSFET Modules

    Infineon Expands Portfolio of Its CoolSiC 1.2kV and 2kV MOSFET Modules

    2 Min Read

    Infineon Technologies AG announced the expansion of its CoolSiC 1200 V and 2000 V MOSFET module families with a new industry-standard package. The proven 62mm device is designed in half-bridge topology and is based on the recently introduced and advanced M1H silicon carbide (SiC) MOSFET technology.

    The package enables the use of SiC for mid-power applications from 250 kW – where silicon reaches the limits of power density with IGBT technology. Compared to a 62mm IGBT module, the list of applications now additionally includes solar, server, energy storage, EV charger, traction, commercial induction cooking and power conversion systems.

    The M1H technology enables a significantly wider gate voltage window, ensuring high robustness to driver and layout-induced voltage spikes at the gate without any restrictions even at high switching frequencies. In addition to that, very low switching and transmission losses minimize cooling requirements.

    Combined with a high reverse voltage, these devices meet another requirement of modern system design. By using Infineon’s CoolSiC chip technology, converter designs can be made more efficient, the nominal power per inverter can be increased and system costs can be reduced.

    With baseplate and screw connections, the package features a very rugged mechanical design optimized for highest system availability, minimum service costs and downtime losses. Outstanding reliability is achieved through high thermal cycling capability and a continuous operating temperature (T vjop) of 150°C. The symmetrical internal package design provides identical switching conditions for the upper and lower switches. Optionally, the thermal performance of the module can be further enhanced with pre-applied thermal interface material (TIM).

    The CoolSiC 62mm package MOSFETs are available in 1200 V variants of 5 mΩ/180 A, 2 mΩ/420 A and 1 mΩ/560 A. The 2000 V portfolio will include the 4 mΩ/300 A and 3 mΩ/400 A variants. The portfolio will be completed in Q1 2024 with the 1200 V/3 mΩ and 2000 V/5 mΩ variants.

    An evaluation board is available for rapid characterization of the modules (double pulse/continuous operation). For ease of use, it provides flexible adjustment of the gate voltage and gate resistors. At the same time, it can be used as a reference design for driver boards for volume production.

    Original – Infineon Technologies

    Comments Off on Infineon Expands Portfolio of Its CoolSiC 1.2kV and 2kV MOSFET Modules
  • SemiQ Expands Its Portfolio of QSiC™ Silicon Carbide Modules with a Family of 1200V Modules in SOT-227 Package

    SemiQ Expands Its Portfolio of QSiC™ Silicon Carbide Modules with a Family of 1200V Modules in SOT-227 Package

    2 Min Read

    SemiQ announced that it has expanded its portfolio of QSiC™ Silicon Carbide modules with the launch of a family of 1200V MOSFETs that pairs with or without 1200V SiC Schottky Diodes in a SOT-227 package.

    Crafted from high-performance ceramics and rigorously engineered to function with unwavering reliability in challenging conditions, the newly introduced SemiQ SiC modules achieve remarkably high performance. This enhanced performance empowers higher power densities and more streamlined design configurations.

    The QSiC™ modules feature high breakdown voltage (> 1400 V), high-temperature operation (Tj = 175 °C), and low Rds(On) shift over the full operating temperature range while providing industry-leading gate oxide stability and gate oxide lifetime, avalanche (UIS) ruggedness, and extended short-circuit withstand times.

    Target markets for the new QSiC™ modules with our existing SOT-227 SiC SBD modules include EV charging, on-board chargers (OBCs), DC-DC converters, E-compressors, fuel cell converters, medical power supplies, energy storage systems, solar and wind energy systems, data center power supplies, UPS/PFC circuits, and other automotive and industrial power applications.

    All of the new QSiC™ modules are tested at wafer-level gate burn-in to provide high-quality gate oxide with stable gate threshold voltage. Besides the burn-in test, which helps to stabilize the extrinsic failure rate, stress tests such as gate stress, high-temperature reverse bias (HTRB) drain stress, and high humidity, high voltage, high temperature (H3TRB) to ensure requisite industrial grade quality levels.

    Dr. Timothy Han, President at SemiQ, said, “We are delighted with the customer input and needs for our new family of QSiC™ high-power modules and thank our SemiQ team who have worked tirelessly to build and qualify our latest QSiC™ modules.”

    SemiQ’s new 1200V SOT-227 modules are available in 20mΩ, 40mΩ, 80mΩ SiC MOSFET categories. A table with part numbers is shown below.

    Part NumbersCircuit ConfigurationRatings, PackagesRds(on), mΩ
    GCMX020B120S1-E1Single MOSFET w/o SBD1200V/113A, SOT-22720
    GCMS020B120S1-E1Single MOSFET w SBD1200V/113A, SOT-22720
    GCMX040B120S1-E1Single MOSFET w/o SBD1200V/57A, SOT-22740
    GCMS040B120S1-E1Single MOSFET w SBD1200V/57A, SOT-22740
    GCMX080B120S1-E1Single MOSFET w/o SBD1200V/30A, SOT-22780
    GCMS080B120S1-E1Single MOSFET w SBD1200V/30A, SOT-22780

    Original – SemiQ

    Comments Off on SemiQ Expands Its Portfolio of QSiC™ Silicon Carbide Modules with a Family of 1200V Modules in SOT-227 Package
  • Littelfuse Launches FDA117 Optically Isolated Photovoltaic Driver

    Littelfuse Launches FDA117 Optically Isolated Photovoltaic Driver

    2 Min Read

    Littelfuse, Inc. announced the launch of the FDA117 Optically Isolated Photovoltaic Driver. This innovative product generates a floating power source, making it an exceptional choice for isolated switching applications in a wide range of industries.

    The FDA117 is specifically designed to control discrete standard power MOSFETs and IGBTs using a floating voltage source, ensuring isolation between the low-voltage drive input side and high-voltage load output side. With an input control current range of 5 mA to 50 mA, an integrated fast turn-off circuitry, and 5 kVRMS reinforced isolation, the FDA117 provides sufficient voltage and current to drive discrete power MOSFETs and IGBTs effectively.

    One of the key differentiators of the FDA117 is its ability to generate a floating power source with up to 15.3 V voltage and 60 µA current, making it suitable for driving standard MOSFET devices and IGBTs. This feature allows for greater flexibility in application designs, enabling the direct driving of standard MOSFET/IGBT devices and securely turning off external power semiconductors in less than 0.5 milliseconds.

    Product designs that can benefit from the FDA117 include power semiconductor applications in the following markets (to name a few):

    • Industrial
    • Energy
    • Building Automation
    • Smart Home

    Whether it is used in custom solid-state relay designs, controlling electrical power and loads, or industrial process control, the FDA117 provides the necessary isolation barrier to protect equipment and individuals from electrical hazards.

    “To give our customers more flexibility in their application designs, we developed the FDA117 to add a single-channel version to our existing portfolio of Photovoltaic Drivers,” said Mark P. Smith, Director, Product Management, Integrated Circuits & MCU. “High open circuit voltage and short circuit current, combined with 5 kVRMS reinforced isolation voltage, extend the design flexibility.”

    The FDA117 is available in both 4-pin DIP through-hole and surface mount packages, providing pinout compatibility with other Photovoltaic Drivers available on the market. This compatibility ensures ease of integration into existing designs without any major modifications.

    The FDA117 Optically Isolated Photovoltaic Driver includes the following key features:

    • Operates with as low as 5 mA input control current
    • Enables driving standard power MOSFETs and IGBTs
    • Provides a floating output voltage ranging from 10.5 V to 15.3 V
    • Integrated fast turn-off circuitry for controlled switching
    • 5,000 VRMS reinforced insulation for enhanced safety
    • 4-pin surface mount and through-hole package options

    Original – Littelfuse

    Comments Off on Littelfuse Launches FDA117 Optically Isolated Photovoltaic Driver
  • VisIC Technologies Revolutionizes Automotive Power Electronics with V22TG D³GAN

    VisIC Technologies Revolutionizes Automotive Power Electronics with V22TG D³GAN

    1 Min Read

    VisIC Technologies announced that the samples of the V22TG D3GAN will be available in the first quarter of 2024. This early availability allows manufacturers to assess and experience the performance and benefits of the package firsthand, aiding in the rapid development of the next generation of systems.

    Key Features and Benefits:

    1. Advanced Leaded Top-Side Cooled Isolated.
    2. Automotive and High Voltage Capability.
    3. High Power Density and Low On-Resistance.
    4. Versatile and Easy to Implement.

    Dr. Tamara Baksht, CEO and Co-Founder: “This advanced power package not only offers exceptional performance and reliability but also provides the versatility and ease of implementation required for emerging automotive and industrial applications. We are confident that the V22TG D3GAN will empower manufacturers to accelerate the adoption of electric vehicles.”

    Original – VisIC Technologies

    Comments Off on VisIC Technologies Revolutionizes Automotive Power Electronics with V22TG D³GAN
  • OKI Develops GaN Lifting offBonding Technology on QST Substrates of Shin-Etsu Chemical

    OKI Develops GaN Lifting off/Bonding Technology on QST Substrates of Shin-Etsu Chemical

    3 Min Read

    OKI, in collaboration with Shin-Etsu Chemical Co., Ltd., has announced the successful development of a technology that uses OKI’s CFB (crystal film bonding) technology to lift off only the GaN (gallium nitride) functional layer from Shin-Etsu Chemical’s uniquely improved QST® (Qromis Substrate Technology) substrate and bond it to a different material substrate.

    This technology enables the vertical conduction of GaN and is expected to contribute to the realization and commercialization of vertical GaN power devices capable of controlling large currents. The two companies will work further together to develop vertical GaN power devices that can be implemented in society by partnering with companies that manufacture these devices.

    GaN devices are attracting attention as next-generation devices that combine high device characteristics with low power consumption, such as power devices that require high breakdown voltages of 1800 volts or more, high-frequency devices for Beyond5G, and high-brightness micro-LED displays.

    In particular, vertical GaN power devices are expected to achieve significant demand growth as devices that can improve the basic performance of electric vehicles by endowing them with extended driving ranges and shortened power supply times. However, two major challenges hinder the social implementation of vertical GaN power devices: the diameter of the wafers must be increased to improve productivity and vertical conductivity must be realized to enable large current control.

    The coefficient of thermal expansion of Shin-Etsu Chemical’s QST substrate is equivalent to that of GaN. It can suppress warpage and cracking. This characteristic enables the crystal growth of thick GaN films with high breakdown voltages even on wafers larger than 8 inches, thereby enabling the production of wafers with larger diameters.

    On the other hand, OKI’s CFB technology can lift off only the GaN functional layer from the QST substrate while maintaining high device characteristics. The insulating buffer layer required for GaN crystal growth can be removed and bonded to various substrates via metal electrodes that allow ohmic contact.

    Bonding of these functional layers to a conductive substrate with high heat dissipation will enable both high heat dissipation and vertical conductivity. Through this, the combined technologies of Shin-Etsu Chemical and OKI solve the above two major challenges, paving the way for the social implementation of vertical GaN power devices.

    In the future, the two companies will contribute to the realization and widespread use of vertical GaN power devices through Shin-Etsu Chemical’s provision of QST substrates or GaN grown QST substrates to companies manufacturing GaN devices and OKI’s provision of CFB technology through partnering and licensing.

    Furthermore, OKI hopes to use CFB technology to provide added value to semiconductor devices that go beyond the framework of single materials and help realize the company’s key message of “Delivering OK! to your life”.

    Original – OKI

    Comments Off on OKI Develops GaN Lifting off/Bonding Technology on QST Substrates of Shin-Etsu Chemical
  • Vincotech Introduced New flowDUAL E3 SiC

    Vincotech Introduced New flowDUAL E3 SiC

    1 Min Read

    Engineered for maximum power density, this half-bridge module can serve to construct excellent H-bridges and sixpacks. Far higher current handling, enhanced power loss dissipation, greater scalability than a solution with a single-module footprint – the flowDUAL delivers all this and more. 

    In combination with VINcoPress and advanced die-attach technology, this new baseplate-less module from Vincotech is your first choice for a wide range of high-power use cases where utmost efficiency and reliability are top priorities.

    Main benefits

    • Outstanding, ≥99% conversion efficiency brings down overall costs
    • Low stray inductance and symmetrical chip layout enable higher switching frequency and lower system costs
    • Greater supply chain security with
      – the new flow E3 industry standard-compatible housing (CTI >600)
      – the latest multi-sourced SiC devices
    • Excellent thermal performance with VINcoPress technology to decrease junction temperature and increase lifetime
    • Pre-applied PC-TIM rated for 150°C helps reduce production cost

    Applications

    • Industrial drives
    • Embedded drives
    • EV Chargers
    • Solar
    • UPS

    Original – Vincotech

    Comments Off on Vincotech Introduced New flowDUAL E3 SiC
  • All Wolfspeed WolfPACK SiC Power Modules Now Available with TIM

    All Wolfspeed WolfPACK SiC Power Modules Now Available with TIM

    1 Min Read

    The Wolfspeed WolfPACK power module family is designed to give engineers choice and flexibility when working on power electronics applications greater than 10 kW.

    In addition to half-bridge and six-pack topologies, WolfPACK modules are now available in full-bridge configurations—all with the option for pre-applied Honeywell™ PTM6000 Series TIM.

    Selecting pre-applied TIM can reduce assembly cost and complexity, while improving reliability and performance. Compared to standard grease solutions, WolfPACK modules with pre-applied TIM can reduce the junction temperature by 40°C under the same conditions or increase current capability by 60% due to the reduction in thermal resistance.

    All WolfPACK modules are designed to provide clean, reliable power for energy conversion systems. By leveraging more than 35 years of vertically integrated industry experience, Wolfspeed ensures that these modules offer low losses in a package that lends itself to fast design implementation, scalability, long term design support, and lower assembly overhead.

    Original – Wolfspeed

    Comments Off on All Wolfspeed WolfPACK SiC Power Modules Now Available with TIM
  • BorgWarner to Deliver SiC Bi-directional 800V Onboard Charger to the Major North American OEM

    BorgWarner to Deliver SiC Bi-directional 800V Onboard Charger to the Major North American OEM

    2 Min Read

    BorgWarner has clinched an agreement with a major North American OEM to supply its bi-directional 800V Onboard Charger (OBC) for the automaker’s premium passenger vehicle battery electric vehicle (BEV) platforms. The technology leverages silicon carbide (SiC) power switches for improved efficiency and delivers amplified power density, power conversion and safety compliance. Start of production is slated for January 2027.  

    “This is a big accomplishment for the team at BorgWarner, highlighting our first OBC win with this OEM and marks the first OBC win in North America,” said Dr. Stefan Demmerle, President and General Manager, BorgWarner PowerDrive Systems.

    “Through our world-class power electronics expertise and market leading status for our 800-volt and silicon carbide technology, we are providing a solution to maximize charging power capabilities, extend power densities and enhance efficiencies while catering to differing grid configurations across regions.”

    BorgWarner’s OBC technology is installed in electric vehicles to convert alternating current (AC) from the power grid to direct current (DC) to charge batteries. The OBC is capable of powers ranging from 19.2kW single-phase operation to 22kW three-phase operation.

    The 19.2kW power level uses two power lines for a single-phase grid connection, which is unique to the U.S. market. The 22kW power level uses a three-phase grid connection and is intended for use in the European market. The 19.2kW single-phase charger is currently the only one of its kind to be introduced into the U.S. market. 

    The OBC incorporates a bi-directional vehicle-to-load (V2L) operating mode that enables users to use the vehicle battery pack to charge various standalone applications, which is an increasingly desired feature within the industry. Additionally, both the charger hardware and software are designed and produced by BorgWarner.

    Original – BorgWarner

    Comments Off on BorgWarner to Deliver SiC Bi-directional 800V Onboard Charger to the Major North American OEM
  • Magnachip Semiconductor Starts Mass Production of Two New 650V SJ MOSFETs

    Magnachip Semiconductor Starts Mass Production of Two New 650V SJ MOSFETs

    1 Min Read

    Magnachip Semiconductor Corporation announced that the Company has begun mass production of two new 650V Super Junction Metal-Oxide-Semiconductor Field-Effect Transistors (SJ MOSFETs) offerings.

    These two 650V SJ MOSFETs (MMUB65R090RURH, MMUB65R115RURH) utilize an innovative PDFN88 package, which significantly reduces their thickness and size. The thickness has been reduced by approximately 81% compared to D2PAK products and 63% compared to DPAK products, while the overall footprint has been reduced to about 41% of D2PAK SJ MOSFETs.

    These new SJ MOSFETs — upgraded by the PDFN88 package — offer excellent design flexibility, efficient heat dissipation, and low RDS(on) (the resistance value between the drain and the source of MOSFETs during on-state operation) characteristics. As a result, they are well-suited for various applications that require compact size and high efficiency, such as OLED TVs, servers, lighting products, laptop chargers and adapters.

    New 650V SJ MOSFETs in a PDFN88 package

    “Magnachip will continue to develop high-performance power solutions enhanced by new packaging technology, building upon the successful mass production of these 650V SJ MOSFET products,” said YJ Kim, CEO of Magnachip. “We aim to drive expansion in the electronics market through our extended product portfolio and rigorous quality control.”

    Original – Magnachip Semiconductor

    Comments Off on Magnachip Semiconductor Starts Mass Production of Two New 650V SJ MOSFETs