• Nexperia Releases 650V Silicon Carbide Diodes for Demanding Power Conversion Applications

    Nexperia Releases 650V Silicon Carbide Diodes for Demanding Power Conversion Applications

    2 Min Read

    Nexperia introduced a 650 V Silicon Carbide (SiC) Schottky diode designed for power applications which require ultra-high performance, low loss, and high efficiency. The 10 A, 650 V SiC Schottky diode is an industrial-grade part that addresses the challenges of demanding high voltage and high current applications. These include switched-mode power supplies, AC-DC and DC-DC converters, battery-charging infrastructure, uninterruptible power supplies and photovoltaic inverters and allow for more sustainable operations. Data centers, for example, equipped with power supplies designed using Nexperia’s PSC1065K SiC Schottky diode will be better placed to meet rigorous energy efficiency standards than those using solely silicon-based solutions.

    The PSC1065K delivers leading-edge performance with temperature-independent capacitive switching and zero recovery behavior culminating in an outstanding figure-of-merit (QC x VF). Its excellent switching performance is almost entirely independent of current and switching speed variations. The merged PiN Schottky (MPS) structure of the PSC1065K provides additional benefits, such as outstanding robustness against surge currents that eliminates the need for additional protection circuitry. These features significantly reduce system complexity and enable hardware designers to achieve higher efficiency with smaller form factors in rugged high-power applications. Designers can be further reassured by Nexperia’s proven reputation as a supplier of high-quality products in a range of semiconductor technologies.

    This SiC Schottky diode is encapsulated in a Real-2-Pin (R2P) TO-220-2 through-hole power plastic package. Additional package options include the surface mount (DPAK R2P and D2PAK R2P) and through-hole (TO-247-2) with a real 2-pin configuration that enhances reliability in high-voltage applications at temperatures up to 175 °C.

    Katrin Feurle, Senior Director of the Product Group SiC at Nexperia, adds: “We are proud to offer a high-performance SiC Schottky diode that ranks among the top tier of currently available solutions. In an increasingly energy-conscious world, we are bringing greater choice and availability to the market as demand for high-volume, high-efficiency applications increases significantly.”

    Nexperia plans to continuously augment its portfolio of SiC diodes by including automotive-grade parts that operate at 650 V and 1200 V voltages with currents in the 6-20 A range. Samples and production quantities of the new SiC diodes are available now.

    Original – Nexperia

    Comments Off on Nexperia Releases 650V Silicon Carbide Diodes for Demanding Power Conversion Applications
  • DENSO Develops Its First SiC Inverter

    DENSO Develops Its First SiC Inverter

    2 Min Read

    DENSO CORPORATION announced that it has developed its first-ever inverter with silicon carbide (SiC) semiconductors. This inverter, which is incorporated in the eAxle, an electric driving module developed by BluE Nexus Corporation, will be used in the new RZ, Lexus’ first dedicated battery electric vehicle (BEV) model has been released on March 30, 2023.

    SiC power semiconductors consist of silicon and carbon that significantly reduce power loss compared with silicon (Si) power semiconductors. The verification of cruising test in a certain condition, which test was performed by BEV consisted of SiC semiconductor inverters, demonstrated inverters with SiC power semiconductor reduce power loss less than half of ones with Si semiconductor. As a result, the energy efficiency of BEVs is improved and cruising range is extended.

    Key elements of developing the new inverter:

    • SiC power semiconductors with DENSO’s unique trench-type metal-oxide-semiconductor (MOS) structure improve the output per chip due to reducing the power loss caused by heat generated. The unique structure achieved high voltage and low on-resistance operation.

    Key elements of manufacturing the new inverter:

    • Based on the high-quality technology jointly developed by DENSO and Toyota Central R&D Labs., Inc., we utilize SiC epitaxial wafers that incorporate the results of work commissioned by New Energy and Industrial Technology Development Organization (NEDO). As a result, we have halved the number of crystal defects that prevent the device from operating normally due to the disorder of the atomic arrangement of the crystal.
    • By reducing crystal defects, the quality of SiC power semiconductor devices used in vehicles and their stable production are ensured.

    DENSO calls its SiC technology “REVOSIC®,” and uses it to comprehensively develop technologies for products ranging from wafers to semiconductor devices and modules such as power cards.

    DENSO will contribute to the realization of a carbon-neutral society through development aimed at more efficient energy management for vehicles, while also utilizing the grant from Green Innovation Fund (GI Fund), which was adopted in 2022.

    Original – Denso

    Comments Off on DENSO Develops Its First SiC Inverter
  • Industrial-Grade SiC MOSFET from Diodes Incorporated Enables Higher Power Density

    Industrial-Grade SiC MOSFET from Diodes Incorporated Enables Higher Power Density

    1 Min Read

    Diodes Incorporated (Diodes) introduced the latest addition to its portfolio of Silicon Carbide (SiC) products: the DMWS120H100SM4 N-channel SiC MOSFET. This device addresses demand for higher efficiency and higher power density for applications such as industrial motor drives, solar inverters, data center and telecom power supplies, DC-DC converters, and electric vehicle (EV) battery chargers.

    The DMWS120H100SM4 operates at a high voltage (1200V) and drain current (up to 37A) while maintaining low thermal conductivity (RθJC = 0.6°C/W), making it well-suited for applications running in harsh environments. This MOSFET has a low RDS(ON) (typical) of only 80mΩ (for a 15V gate drive) to minimize conduction losses and provide higher efficiency. In addition, the device has a gate charge of only 52nC to reduce switching losses and lower the package temperature.

    This product is the first SiC MOSFET on the market in a TO247-4 package. The additional Kelvin sense pin can be connected to the source of the MOSFET to optimize the switching performance, thereby enabling even higher power densities.

    Original – Diodes Incorporated

    Comments Off on Industrial-Grade SiC MOSFET from Diodes Incorporated Enables Higher Power Density
  • Toshiba Releases 150V N-channel Power MOSFET to Increase the Efficiency of Power Supplies

    Toshiba Releases 150V N-channel Power MOSFET to Increase the Efficiency of Power Supplies

    2 Min Read

    Toshiba Electronic Devices & Storage Corporation has launched a 150V N-channel power MOSFET “TPH9R00CQ5,” which uses the latest generation U-MOSX-H process, for switching power supplies of industrial equipment, such as that used in data centers and communications base stations.

    TPH9R00CQ5 features an industry-leading low drain-source On-resistance of 9.0mΩ (max), approximately a 42% reduction from Toshiba’s existing product, “TPH1500CNH1.” Compared with Toshiba’s existing product “TPH9R00CQH,” the reverse recovery charge is reduced by about 74% and the reverse recovery time by about 44%, both key reverse recovery characteristics for synchronous rectification applications. Used in synchronous rectification applications, the new product reduces the power loss of switching power supplies and helps improve efficiency. Furthermore, compared to TPH9R00CQH, the new product reduces spike voltage generated during switching, helping lower the EMI of power supplies.

    The product uses the popular, surface-mount-type SOP Advance(N) package.

    Toshiba also offers tools that support circuit design for switching power supplies. Alongside the G0 SPICE model, which verifies circuit function in a short time, highly accurate G2 SPICE models, which accurately reproduce transient characteristics, are now available.

    Toshiba has also developed “1 kW Non-Isolated Buck-Boost DC-DC Converter for Telecommunications Equipment” and “Three-phase Multi Level Inverter using MOSFET” reference designs that utilize the new product. They are available on Toshiba’s website from today. The new product can also be utilized for the already published “1 kW Full-Bridge DC-DC Converter” reference design.

    Toshiba will continue to expand its lineup of power MOSFETs that reduce power loss, increase the efficiency of power supplies, and help to improve equipment efficiency.

    Applications:

    • Power supplies of industrial equipment, such as that used in data centers and communications base stations.
    • Switching power supplies (high efficiency DC-DC converters, etc.)

    Features:

    • Industry-leading low On-resistance: RDS(ON)=9.0mΩ (max) (VGS=10V)
    • Industry-leading low reverse recovery charge: Qrr=34nC (typ.) (-dIDR/dt=100A/μs)
    • Industry-leading fast reverse recovery time: trr=40ns (typ.) (-dIDR/dt=100A/μs)
    • High channel temperature rating: Tch (max)=175°C

    Original – Toshiba

    Comments Off on Toshiba Releases 150V N-channel Power MOSFET to Increase the Efficiency of Power Supplies
  • ROHM Establishes Ultra-High-Speed Control IC Technology that Maximizes the Performance of GaN Devices

    ROHM Establishes Ultra-High-Speed Control IC Technology that Maximizes the Performance of GaN Devices

    2 Min Read

    While the adoption of GaN devices has expanded in recent years due to their superior high-speed switching characteristics, the speed of Control ICs, which are responsible for directing the driving of these devices, has become challenging.

    In response, ROHM has further evolved its ultra-high-speed pulse control technology Nano Pulse Control™. It is cultivated for power supply ICs, succeeding in significantly improving the control pulse width from the conventional 9ns to an industry-best 2ns. Leveraging this technology allowed ROHM to establish its ultra-high-speed Control IC technology that maximizes the performance of GaN devices.

    When pursuing miniaturization of the power supply circuit, it is necessary to reduce the size of the peripheral components through high-speed switching. Achieving this requires a Control IC that can take advantage of the drive performance of high-speed switching devices such as GaN devices.

    To propose solutions that include peripheral components, ROHM established ultra-high-speed Control IC technology optimized for GaN devices utilizing proprietary analog power supply technology Nano Pulse Control™.

    ROHM is currently working to commercialize Control ICs utilizing this technology, with plans to start sample shipment of 100V 1ch DC-DC Control IC in the second half of 2023. Using in conjunction with ROHM GaN devices (EcoGaN™ series) is expected to result in significant energy savings and miniaturization in a variety of applications, including base stations, data centers, FA (Factory Automation) equipment, and drones.

    Going forward, ROHM will continue to develop products that solve social issues by pursuing greater ease-of-use in applications centered on its strengths in analog technology.

    Original – ROHM

    Comments Off on ROHM Establishes Ultra-High-Speed Control IC Technology that Maximizes the Performance of GaN Devices
  • CISSOID & Silicon Mobility Expand Partnership

    CISSOID & Silicon Mobility Expand Partnership

    2 Min Read

    CISSOID and Silicon Mobility have announced a far-reaching partnership to deliver a complete and modular Silicon Carbide (SiC) inverter reference design supporting electric motor drives up to 350kW/850V. The reference design includes CISSOID’s high voltage SiC-based power module, integrated Gate Driver board, Control board with Silicon Mobility’s ultra-fast and safe OLEA T222 FPCU, DC and phase current sensors, DC link capacitor and EMI filtering together with integrated liquid cooling. CISSOID will also sell and deliver Silicon Mobility’s OLEA® APP INVERTER Software for Electric Vehicle Powertrain Control providing the customer with a development platform ready for integration work.

    Dave Hutton, CISSOID’s CEO commented: “Up until now, customers only really had 2 options. The first was to develop all the hardware, then integrate with third party software into their design environment. This was extremely time consuming and required in depth knowledge of SiC-based power system design. The second option was to buy an off-the-shelf inverter that, however, does not offer the ability to fully customize for the application requirements.”

    Following this agreement, customers can now buy a complete SiC inverter reference design from CISSOID together with a license to use the Silicon Mobility’s OLEA® APP INVERTER control software and design on top its software application. CISSOID will also provide the technical support to integrate the inverter into the end-application.

    Once the design is completed, the customer can choose to purchase the entire inverter Bill-of-Material (BOM) from CISSOID or just the SiC Intelligent Power Module (IPM) and Control Board, while purchasing other components and Inverter housing from their preferred suppliers. The customer can then integrate the inverter into their motor drive system prior moving to production.

    David Fresneau, VP Marketing and Business Development at Silicon Mobility added: “This is a great opportunity for our customers to get access to our advanced e-motor control hardware and software platform and a fully integrated high performance inverter reference design from CISSOID which will significantly simplify the design process and reduce Time-to Market.

    Original – CISSOID

    Comments Off on CISSOID & Silicon Mobility Expand Partnership