-
LATEST NEWS / PRODUCT & TECHNOLOGY / Si2 Min Read
Toshiba Electronic Devices & Storage Corporation has launched two automotive 40V N-channel power MOSFETs, “XPJR6604PB” and “XPJ1R004PB,” that use Toshiba’s new S-TOGL™ (Small Transistor Outline Gull-wing Leads) package with U-MOS IX-H process chips. Volume shipments start today.
Safety-critical applications like autonomous driving systems ensure reliability through redundant design, with the result that they integrate more devices and require more mounting space than standard systems. Accordingly, advancing size reductions in automotive equipment requires power MOSFETs that can be mounted at high current densities.
XPJR6604PB and XPJ1R004PB use Toshiba’s new S-TOGL™ package (7.0mm×8.44mm) which features a post-less structure unifying the source connective part and outer leads. A multi-pin structure for the source leads decreases package resistance.
The combination of the S-TOGL™ package and Toshiba’s U-MOS IX-H process achieve a significant On-resistance reduction of 11% against Toshiba’s TO-220SM (W) package product, which has the same thermal resistance characteristics. The new package also cuts the required mounting area by approximately 55% against the TO-220SM(W) package.
On top of this, the 200A drain current rating of the new package is higher than Toshiba’s similarly sized DPAK + package (6.5mm×9.5mm), enabling high current flow. Overall, the S-TOGL™ package realizes high-density and compact layouts, reduces the size of automotive equipment, and contributes to high heat dissipation.
Since automotive equipment is used in extreme temperature environments, the reliability of surface mounting solder joints is a critical consideration. The S-TOGL™ package uses gull-wing leads that reduce mounting stress, improving the reliability of the solder joint.
Assuming that multiple devices will be connected in parallel for applications requiring higher-current operation, Toshiba supports grouping shipment for the new products, in which the gate threshold voltage is used for grouping. This allows designs using product groups with small characteristic variation.
Toshiba will continue to expand its product line-up of power semiconductor products and contribute to the realization of carbon neutrality with more user-friendly, high-performance power devices.
Features:
- New S-TOGL™ package: 7.0mm×8.44mm (typ.)
- Large drain current rating:
XPJR6604PB: ID=200A
XPJ1R004PB: ID=160A - AEC-Q101 qualified
- IATF 16949/PPAP available[4]
- Low On-resistance:
XPJR6604PB: RDS(ON)=0.53mΩ (typ.) (VGS=10V)
XPJ1R004PB: RDS(ON)=0.8mΩ (typ.) (VGS=10V)
Original – Toshiba
-
LATEST NEWS / PRODUCT & TECHNOLOGY / Si2 Min Read
The electrification of the transportation system is advancing continuously. In addition to passenger cars, 2- and 3-wheelers as well as light vehicles are increasingly being electrified. Therefore, the automotive market for Electronic Control Units (ECUs) powered by 24 V-72 V is expected to keep growing in the coming years.
To address this development, Infineon Technologies AG is complementing its OptiMOS™ 5 portfolio of automotive MOSFETs in the 60 V and 120 V range with new products in the high power packages TOLL, TOLG and TOLT. They are offering a compact form factor with very good thermal performance combined with excellent switching behavior.
The six new products offer a narrowed gate threshold voltage (V GS(th)) enabling designs with parallel MOSFETs for increased output power capability. The IAUTN06S5N008, IAUTN06S5N008G and IAUTN06S5N008T are 60 V MOSFETs, and the IAUTN12S5N017, IAUTN12S5N018G and IAUTN12S5N018T are 120 V MOSFETs.
The on resistance (R DS(on)) ranges from 1.7 mΩ to 1.8 mΩ for the 120 V MOSFETs and is 0.8 mΩ for the 60 V MOSFETs. This makes the 60V MOSFETs perfectly suited for high power 24 V supplied CAV applications or for HV-LV DCDC converters in xEVs. The 120 V MOSFETs are used in 48 V – 72 V supplied traction inverters for 2- or 3-wheelers and light electric vehicles.
Original – Infineon Technologies
-
GaN / PRODUCT & TECHNOLOGY / WBG3 Min Read
Transphorm, Inc. announced it has demonstrated up to 5 microsecond short circuit withstand time (SCWT) on a GaN power transistor with a patented technology. The achievement is the first of its kind on record, marking an important milestone for the industry as a whole. It proves Transphorm GaN’s ability to meet the required short circuit capabilities of rugged power inverters such as servo motors, industrial motors, and automotive powertrains served traditionally by silicon IGBTs or silicon carbide (SiC) MOSFETs— an over $3 billion GaN TAM over the next 5 years.
The demonstration was developed with support from Yaskawa Electric Corporation, a long-term strategic partner of Transphorm’s and a global leader in low and medium voltage drives, servo systems, machine controllers, and industrial robots. This makes GaN a highly attractive power conversion technology for servo systems, as it allows for higher efficiency and reduced size compared to incumbent solutions.
To do that, GaN must pass stringent robustness tests—of which, short-circuit survivability is the most challenging. In case of short-circuit faults, the device must survive extreme conditions with both high current and high voltage. The system can take up to a few microseconds to detect the fault and shut down the operations. During this time, the device must withstand the fault on its own.
“If a power semiconductor device cannot survive short-circuit events, the system itself may fail. There was a strong perception that GaN power transistors could not meet the short circuit requirements needed for heavy-duty power applications such as ours,” said Motoshige Maeda, Department Manager of Fundamental R&D Management Department, Corporate Technology Division, Yaskawa. “Having worked with Transphorm for many years, we believed that perception to be unfounded and have been proven right today. We’re excited about what their team has accomplished and look forward to demonstrating how this new GaN feature can benefit our designs.”
The short-circuit technology has been demonstrated on a newly designed 15 mΩ 650 V GaN device. Notably, that device reaches a peak efficiency of 99.2% and a maximum power of 12 kW in hard-switching conditions at 50 kHz. The device demonstrated not only performance, but also reliability, passing high-temperature high-voltage stress requirements.
“Standard GaN devices can withstand short-circuit for only a few hundredths of nanoseconds, which is too short for fault detection and safe shut-down. However, with our cascode architecture and key patented technology, we were able to demonstrate short-circuit withstand time up to 5 microseconds with no additional external components, thus retaining low cost and high performance,” said Umesh Mishra, CTO and Co-Founder, Transphorm.
“We understand the demands of high-power, high-performance inverter systems. We have a long history of strong innovation, and we’re proud to say that experience helped us bring GaN to the next level. This is yet another validation of Transphorm’s global leadership in high voltage GaN robustness and reliability and will be a gamechanger for GaN in motor drives and other high-power systems.”
The full description explaining the SCWT achievement, the demonstration analysis, and more is expected to be presented at a major power electronics conference next year.
Original – Transphorm