• New 600 V Discrete IGBTs from Nexperia for Class-leading Efficiency in Power Applications

    New 600 V Discrete IGBTs from Nexperia for Class-leading Efficiency in Power Applications

    2 Min Read

    Nexperia launched its entry to the insulated gate bipolar transistor (IGBT) market with a range of 600 V devices, starting with the 30A NGW30T60M3DF. By adding IGBTs to its extensive portfolio, Nexperia is addressing the growing demand for efficient, high-voltage switching devices with a range of performance and cost requirements.

    These enable higher power density in power conversion and motor drive applications, including industrial motor drives like servo motors ranging from 5 to 20 kW (20 kHz), robotics, elevators, operating grippers, in-line manufacturing, power inverters, uninterruptible power supply (UPS), photovoltaic (PV) strings, EV-charging, and induction heating and welding.

    IGBT is a relatively mature technology. Nonetheless, the market for these devices is expected to grow in line with the increased adoption of solar panels and electric vehicle (EV) chargers. Nexperia’s 600 V IGBTs feature a robust, cost-effective carrier-stored trench-gate advanced field-stop (FS) construction, providing exceptionally low conduction and switching loss performance with high levels of ruggedness in operating temperatures up to 175°C. This improves the efficiency and reliability of power inverters, induction heaters, welding equipment and industrial applications like motor drives and servos, robotics, elevators, operating grippers, and in-line manufacturing.

    Designers can choose between the medium speed (M3) and high speed (H3) series IGBTs. These IGBTs have been designed with very tight parameter distributions, allowing multiple devices to connect safely in parallel. In addition, lower thermal resistance than competing devices enables them to provide higher output power. These IGBTs are also fully rated as soft fast reverse-recovery diodes. This means they are suitable for rectifier and bi-directional circuit applications or to protect against overcurrent conditions.

    “With the release of these IGBTs, Nexperia provides designers with a greater choice of power-switching devices for a broad range of power applications”, according to Dr. Ke Jiang, General Manager Business Group Insulated-Gate Bipolar Transistors & Modules at Nexperia. “IGBTs are the ideal complement to Nexperia’s existing range of CMOS and wide-bandgap switching devices, making Nexperia a one-stop-shop for power electronics designers.”

    These IGBTs are available in a standard, lead-free, TO247-3L package and are HV-H3TRB qualified for outdoor applications. Nexperia plans to follow this release with a series of 1200 V IGBTs. To learn more about Nexperia’s IGBTs, visit: https://www.nexperia.com/igbts

    Original – Nexperia

    Comments Off on New 600 V Discrete IGBTs from Nexperia for Class-leading Efficiency in Power Applications
  • Toshiba Releases 100V N-Channel Power MOSFET That Supports Miniaturization of Power Supply Circuits

    Toshiba Releases 100V N-Channel Power MOSFET That Supports Miniaturization of Power Supply Circuits

    2 Min Read

    Toshiba Electronic Devices & Storage Corporation (“Toshiba”) has launched “TPH3R10AQM,” a 100V N-channel power MOSFET fabricated with Toshiba’s latest-generation process, U-MOS X-H. The product targets applications such as switching circuits and hot swap circuits on the power lines of industrial equipment used for data centers and communications base stations.

    TPH3R10AQM has industry-leading 3.1mΩ maximum drain-source On-resistance, 16% lower than Toshiba’s 100V product, “TPH3R70APL,” which uses the earlier generation process. By the same comparison, TPH3R10AQM has expanded its safe operating area by 76% making it suitable for linear mode operation. Reducing the On-resistance and expanding the linear operating range in the safe operating area reduce the number of parallel connections. Furthermore, its gate threshold voltage range of 2.5V to 3.5V, makes it less likely to malfunction due to gate voltage noise.
    The new product uses the highly footprint compatible SOP Advance(N) package.

    Toshiba will continue to expand its line-up of power MOSFETs that can increase the efficiency of power supplies by reducing loss, and help lower equipment power consumption.

    Applications

    • Power supplies for communications equipment such as for data centers and communications base stations
    • Switching power supplies (High efficiency DC-DC converters, etc.)

    Features

    • Featuring Industry-leading excellent low On-resistance: RDS(ON)=3.1mΩ (max) (VGS=10V)
    • Wide safe operating area
    • High channel temperature rating: Tch (max)=175°C

    Original – Toshiba

    Comments Off on Toshiba Releases 100V N-Channel Power MOSFET That Supports Miniaturization of Power Supply Circuits
  • Kulicke and Soffa Industries, Inc. announced the launch of several new systems and capabilities serving high-volume semiconductor and fast-growing power-semiconductor applications.

    Kulicke & Soffa Expands Core Market Leadership

    2 Min Read

    Kulicke and Soffa Industries, Inc. announced the launch of several new systems and capabilities serving high-volume semiconductor and fast-growing power-semiconductor applications.

    POWERCOMM™ and POWERNEXX™ represent the next evolution in advanced wire bonding systems and are designed with a new generation of intuitive advanced process capabilities which deliver maximum levels of performance, efficiency, and productivity. Additionally, both systems deliver enhanced mean time between assists (MTBA), with automated recovery features that improve the machine to operator ratio and better support localization of semiconductor assembly.

    The POWERCOMM™ advanced wire bonding solution is designed to support high-volume discrete and low-pin count devices commonly used in applications such as data centers, automotive, industrial automation, smartphones, wearables and connected devices.

    The POWERNEXX™ advanced wire bonding solution is optimized for higher density QFN packages with widths of up to 100mm. The improved illumination design on POWERNEXX™ allows faster alignment time through its Pattern Recognition System (PRS). Faster alignment and advanced process capabilities deliver the industry leading UPH and lowest Cost-of-Ownership. 

    In addition to the new POWERCOMM™ and POWERNEXX™ systems, K&S extends its leadership in wedge bond applications with new High-Power-Interconnect (HPI) capabilities addressing the emerging needs of power devices. HPI capabilities are becoming increasingly necessary to assemble applications such as inverters, battery assembly and charging infrastructure which support the growth and increasing efficiency requirements of sustainable energy and electric vehicle applications. The need for more efficient and higher-current applications are driving rapid changes to the power semiconductor market by increasing demand in emerging compound semiconductors, such as Silicon Carbide (SiC) and Gallium Nitride (GaN), but are also demanding new capabilities to support next-generation battery assembly and are accelerating the transition from aluminum wire and ribbon, to copper wire and ribbon. Next generation HPI capabilities are being introduced across Kulicke & Soffa’s leading wedge bonder portfolio today.

    “Our rich history of innovation and ongoing development priorities are enabling us to provide additional value to the increasingly critical assembly process. This recent set of new wire bonding systems and capabilities will better enable customers to optimize productivity, improve material handling capabilities and significantly lower cost-of-ownership,” said Shawn Sarbacker, Kulicke and Soffa’s Vice President of Ball Bonder Business Unit.

    Original – Kulicke and Soffa Industries

    Comments Off on Kulicke & Soffa Expands Core Market Leadership
  • Bourns Introduces its First Silicon Carbide Schottky Barrier Diodes

    Bourns Introduces its First Silicon Carbide Schottky Barrier Diodes

    2 Min Read

    Bourns, Inc. announced its first 650 V – 1200 V Silicon Carbide (SiC) Schottky Barrier Diodes (SBDs). The Bourns® SiC SBD line consists of six models engineered to provide excellent current carrying and thermal capabilities and high power density for increased performance and reliability. These capabilities make Bourns® SiC SBDs optimal high efficiency power conversion solutions for the growing variety of high frequency applications that need to meet reduced size and lower system cost requirements.

    Telecom/Server Switched-Mode Power Supplies (SMPS), photovoltaic inverters, PC power and motor drives are a few of the applications that can benefit from the features provided in the Bourns® BSD Series SiC SBDs.

    To address ongoing design demands for ever higher power efficiency, Bourns® SiC SBDs feature low forward voltage (VF) and high thermal conductivity, which increases efficiency while lowering power dissipation, satisfying application requirements of 650 V and 1200 V solutions.

    The series also has no reverse recovery current to reduce EMI, enabling these SiC SBDs to significantly lower energy losses. In addition to offering 650 V to 1200 V operation with currents in the 6-10 A range, the six new BSD models of wide band gap diodes from Bourns offer designers various forward voltage, current and package options including TO220-2, TO247-3, TO252, and DFN8x8.

    The six Bourns® Model BSD SiC SBDs are available now. These models are RoHS compliant, halogen free, Pb free and their epoxy potting compound is flame retardant to the UL 94V-0 standard.

    For more detailed product information, please see: www.bourns.com/products/diodes/silicon-carbide-sic-schottky-barrier-diodes

    Original – Bourns

    Comments Off on Bourns Introduces its First Silicon Carbide Schottky Barrier Diodes
  • Automotive-Compliant Silicon Carbide MOSFETs from Diodes Incorporated Enhance Automotive Subsystems Efficiency

    Automotive-Compliant Silicon Carbide MOSFETs from Diodes Incorporated Enhance Automotive Subsystems Efficiency

    2 Min Read

    Diodes Incorporated announced a further enhancement of its wide-bandgap product offering with the release of the DMWSH120H90SM4Q and DMWSH120H28SM4Q automotive-compliant Silicon Carbide (SiC) MOSFETs. These N-channel MOSFETs respond to the increasing market demand for SiC solutions that enable better efficiency and higher power density in electric and hybrid-electric vehicle (EV/HEV) automotive subsystems like battery chargers, on-board chargers (OBC), high-efficiency DC-DC converters, motor drivers, and traction inverters.

    The DMWSH120H90SM4Q operates safely and reliably up to 1200VDS with a gate-source voltage (Vgs) of +15/-4V and has an RDS(ON) of 75mΩ (typical) at 15Vgs. This device is designed for OBCs, automotive motor drivers, DC-DC converters in EV/HEV, and battery charging systems.

    The DMWSH120H28SM4Q operates at up to 1200VDS, +15/-4Vgs, and has a lower RDS(ON) of 20 mΩ (typical) at 15Vgs. This MOSFET has been designed for motor drivers, EV traction inverters, and DC-DC converters in other EV/HEV subsystems. Low RDS(ON) enables these MOSFETs to run cooler in applications that require high power density.

    Both products have low thermal conductivity (RθJC=0.6°C/W), enabling drain currents up to 40A in the DMWSH120H90SM4Q and 100A in the DMWSH120H28SM4Q. They also have fast intrinsic and robust body diodes with low reverse recovery charge (Qrr) of 108.52nC in the DMWSH120H90SM4Q and 317.93nC in the DMWSH120H28SM4Q. This enables them to perform fast switching with reduced power losses.

    By using the planar manufacturing process, Diodes has created new MOSFETs that offer more robust and reliable performance in automotive applications—and with increased drain current, breakdown voltage, junction temperature, and power rings as compared to previously released versions. The devices are available in a TO247-4 (Type WH) package, which offers an additional Kelvin sense pin. This can be connected to the source to optimize switching performance, enabling even higher power densities.

    Original – Diodes Incorporated

    Comments Off on Automotive-Compliant Silicon Carbide MOSFETs from Diodes Incorporated Enhance Automotive Subsystems Efficiency
  • Infineon Releases Next Generation 1200 V CoolSiC™ Trench MOSFET in TO263-7 Package to Boosts e-Mobility

    Infineon Releases Next Generation 1200 V CoolSiC™ Trench MOSFET in TO263-7 Package to Boosts e-Mobility

    2 Min Read

    Infineon presents its new generation of 1200 V CoolSiC™ MOSFETs in TO263-7 for automotive applications. The automotive-graded silicon carbide (SiC) MOSFET generation offers high power density and efficiency, enables bi-directional charging and significantly reduces system cost in on-board charging (OBC) and DC-DC applications.

    The 1200 V CoolSiC family member offers best-in-class switching performance through 25 percent lower switching losses compared to the first generation. This improvement in switching behavior enables high-frequency operation, leading to smaller system sizes and increased power density. With a Gate-source threshold voltage (V GS(th)) greater than 4 V and a very low Crss/ Ciss ratio, reliable turn-off at V GS = 0 V is achieved without the risk of parasitic turn-ons. This allows for unipolar driving, resulting in reduced system cost and complexity. In addition, the new generation features a low on resistance (R DS(on)), reducing conductive losses over the whole temperature range of -55°C to 175°C.

    The advanced diffusion soldering chip mount technology (.XT technology) significantly improves the package’s thermal capabilities, lowering the SiC MOSFET junction temperature by 25 percent compared to the first generation.

    Moreover, the MOSFET has a creepage distance of 5.89 mm, meeting 800 V system requirements and reducing coating effort. Infineon is offering a range of R DS(on) options to cater to diverse application demands, including the only 9 mΩ type in the TO263-7 package currently on the market.

    Original – Infineon Technologies

    Comments Off on Infineon Releases Next Generation 1200 V CoolSiC™ Trench MOSFET in TO263-7 Package to Boosts e-Mobility
  • Mitsubishi Electric to Ship Samples of NX-type Full-SiC Power Semiconductor Modules for Industrial Equipment

    Mitsubishi Electric to Ship Samples of NX-type Full-SiC Power Semiconductor Modules for Industrial Equipment

    1 Min Read

    Mitsubishi Electric Corporation announced that it will begin shipping samples of its new NX-type full-SiC (silicon carbide) power semiconductor module for industrial equipment on June 14. The module, which reduces internal inductance and incorporates a second-generation SiC chip, is expected to contribute to the realization of more efficient, smaller and lighter-weight industrial equipment.

    Power semiconductors are increasingly being utilized to convert electric power extra efficiently and thereby help to lower the carbon footprint of global society. Expectations are particularly high for SiC power semiconductors because of their capability to significantly reduce power loss. The demand is expanding for high-power, high-efficiency power semiconductors capable of improving the power-conversion efficiency of components such as inverters used in industrial equipment.

    Mitsubishi Electric began releasing power semiconductor modules equipped with SiC chips in 2010. The new module, which features a low-loss SiC chip and optimized electrode structure, reduces internal inductance by 47% compared to its existing predecessor, enabling reduced power loss. Development of this SiC product have been partially supported by Japan’s New Energy and Industrial Technology Development Organization (NEDO).

    Original – Mitsubishi Electric

    Comments Off on Mitsubishi Electric to Ship Samples of NX-type Full-SiC Power Semiconductor Modules for Industrial Equipment
  • Toshiba Releases 600V Super Junction Structure N-Channel Power MOSFET

    Toshiba Releases 600V Super Junction Structure N-Channel Power MOSFET

    2 Min Read

    Toshiba Electronic Devices & Storage Corporation (“Toshiba”) has expanded its line-up of N-channel power MOSFETs fabricated with the latest-generation process, with a 600V super junction structure suitable for data centers, switching power supplies, and power conditioners for photovoltaic generators. The new product, “TK055U60Z1,” is the first 600V product in the DTMOSVI series.

    By optimizing the gate design and process, 600V DTMOSVI series products reduce drain-source On-resistance per unit area by approximately 13%, and drain-source On-resistance × gate-drain charge, the figure of merit for MOSFET performance, by approximately 52%, compared to Toshiba’s current generation DTMOSIV-H series products with the same drain-source voltage rating. This ensures the series achieve both low conduction loss and low switching loss, and helps to improve efficiency of the switching power supplies.

    The new product is housed in a TOLL package that allows Kelvin connection of its signal source terminal for the gate drive. The influence of inductance in the source wire in the package can be reduced to accentuate the high-speed switching performance of the MOSFET, which suppresses oscillation during switching.

    Toshiba will continue to expand its 600V DTMOSVI series line-up, and its already released 650V DTMOSVI series products, and support energy conservation by reducing power loss in switching power supplies.

    Original – Toshiba Electronic Devices & Storage Corporation

    Comments Off on Toshiba Releases 600V Super Junction Structure N-Channel Power MOSFET
  • Mitsubishi Electric Develops SBD-embedded SiC-MOSFET with New Structure for Power Modules

    Mitsubishi Electric Develops SBD-embedded SiC-MOSFET with New Structure for Power Modules

    2 Min Read

    Mitsubishi Electric Corporation announced that it has developed a new structure for a silicon carbide metal-oxide-semiconductor field-effect transistor (SiC-MOSFET) embedded with a Schottky barrier diode (SBD), which the company has applied in a 3.3 kV full SiC power module, the FMF 800 DC -66 BEW for large industrial equipment such as railways and DC power systems. Samples began shipping on May 31. The chip’s new structure is expected to help downsize railway traction systems, etc. as well as make them more energy efficient, and contribute to carbon neutrality through the increased adoption of DC power transmission.

    SiC power semiconductors are attracting attention with their capacity to significantly reduce power loss. Mitsubishi Electric, which commercialized SiC power modules equipped with SiC-MOSFETs and SiC-SBDs in 2010, has adopted SiC power semiconductors for a variety of inverter systems, including air conditioners and railways.

    The chip integrated with a SiC-MOSFET and a SiC-SBD can be mounted on a module more compactly compared to the conventional method of using separate chips, thus enabling smaller modules, larger capacity, and lower switching loss. It is expected to be widely used in large industrial equipment such as railways and electric power systems. Until now, the practical application of power modules with SBD-embedded SiC-MOSFETs has been difficult due to their relatively low surge-current capability, which results in the thermal destruction of the chips during surge-current events because surge currents in connected circuits concentrate only in specific chips.

    Mitsubishi Electric has now developed the world’s first mechanism by which surge current concentrates on a specific chip in a parallel-connected chip structure inside a power module, and a new chip structure in which all chips start energizing simultaneously so that surge current is distributed throughout each chip. As a result, the power module’s surge-current capacity has been improved by a factor of five or more compared to the company’s existing technology, which is equal to or greater than that of conventional Si power modules, thus enabling the application of an SBD-embedded SiC-MOSFET in a power module.

    Original – Mitsubishi Electric

    Comments Off on Mitsubishi Electric Develops SBD-embedded SiC-MOSFET with New Structure for Power Modules
  • GE Scientists Demonstrate Ultra-High Temperature SiC MOSFET Electronics

    GE Scientists Demonstrate Ultra-High Temperature SiC MOSFET Electronics

    4 Min Read

    A team of scientists from GE Research have set a new record, demonstrating SiC MOSFETs (Metal–Oxide–Semiconductor Field-Effect Transistors) that can tolerate temperatures exceeding 800 degrees C. This at least 200 degrees C higher than previously known demonstrations of this technology and shows the potential of SiC MOSFETs to support future applications in extreme operating environments. It also defies what most electronics experts believed was achievable with these devices.

    As GE’s Aerospace business looks to continuously improve the state-of-the-art in aviation systems for its existing commercial and military customers and seeks to enable new applications in support of space exploration and hypersonic vehicles, building a portfolio of electronics that can function in extreme operating environments will be essential. For more than three decades, GE has built a world leading portfolio in SiC technology and sells an array of SiC-based electrical power products through the Aerospace business for aerospace, industrial and military applications.

    Emad Andarawis, a Principal Engineer in Microelectronics at GE Research, says achieving the high temperature threshold with SiC MOSFETs could open a whole new aperture of sensing, actuation and control applications for space exploration and hypersonic vehicles, stating, “We know that to break new barriers with space exploration and hypersonic travel, we will need robust, reliable electronics systems that can handle the extreme heat and operating environments. We believe that we have set a record, demonstrating 800 degree C SiC MOSFETS that represents a key milestone toward these mission critical goals.”

    GE’s SiC MOSFETs could support the development of more robust sensing, actuation and controls that open new possibilities in space exploration and enable the control and monitoring of hypersonic vehicles traveling at speeds of MACH 5, or greater than 3,500 MPH. That is more than six times the speed that a typical commercial passenger flight travels today.

    Andarawis noted that the electronics industry has seen a number of exciting developments in high temperature electronics with SiC. The National Aeronautics and Space Administration (NASA) has demonstrated SiC JFETs that have tolerated well beyond the 800 degree C threshold. For a long time, the conventional wisdom has been that SiC MOSFETs cannot offer the same degrees of reliability and durability as JFETs at high temperatures. New advancements with the gate oxides in SiC MOSFETS, which have previously been temperature and lifetime limiters, have narrowed the gap considerably.

    The recent demonstration of Andarawis and the GE Research shows that MOSFETs could expand the portfolio of available options to consider. This builds on a growing body of work in SiC-enabled electronics that GE Aerospace researchers are at the forefront of leading. The team is currently collaborating on a project with NASA to apply novel SiC photodiode technology to develop and demonstrate a Ultraviolet imager that enhances space missions to the surface of Venus. GE research teams also are fabricating NASA’s JFETs in our cleanroom facility as part of work they are doing for an external semiconductor partner.

    The cleanroom facility is a major focal point of GE’s research in SiC. It is a 28,000 sq. ft., Class 100 (ISO 9001 certified) facility, based on GE’s research campus in Niskayuna, NY. The facility can support technology from R&D through low-volume production and transfer technology to high-volume manufacturing supporting GE internal products or select external commercial partners (www.ge.com/research/). Andawaris said, “GE’s Cleanroom facility is a tremendous research, prototyping and production asset that is allowing us to rapidly develop and scale promising electronics platforms like SiC MOSFETs. We are excited about the road ahead as we support GE Aerospace’s efforts to redefine air travel in the skies and beyond.”

    Original – GE Research

    Comments Off on GE Scientists Demonstrate Ultra-High Temperature SiC MOSFET Electronics