-
LATEST NEWS / PRODUCT & TECHNOLOGY / Si3 Min Read
ROHM has developed automotive-grade AEC-Q101 qualified 4th Generation 1200V IGBTs that combine class-leading low loss characteristics with high short-circuit resistance. This makes the devices ideal for vehicle electric compressors and HV heaters as well as industrial inverters.
The current lineup includes RGA80TRX2HR / RGA80TRX2EHR / RGA80TSX2HR / RGA80TSX2EHR – in two discrete package types (TO-247-4L and TO-247N), along with 11 bare chip variants – SG84xxWN – with plans to further expand the lineup in the future.
The increasing use of higher voltages in automotive systems and industrial equipment has led to a growing demand for power devices capable of handling high voltages in applications such as vehicle electric compressors, HV heaters, and inverters for industrial equipment.
At the same time, there is a strong push for high efficiency power devices to improve energy conservation, simplified cooling mechanisms, and smaller form factors for a decarbonized society. Automotive electrical components must also comply with automotive reliability standards, while power devices for inverter and heater circuits are required to provide current interruption capabilities during short circuits, necessitating high short-circuit tolerance.
In response, ROHM redesigned the device structure and adopted an appropriate package to develop new 4th Generation IGBTs suitable for high voltage by delivering industry-low loss characteristics with superior short-circuit tolerance.
These devices achieve an industry-leading short-circuit withstand time of 10µs (Tj=25°C) together with low switching and conduction losses while maintaining a high withstand voltage of 1200V and meeting automotive standards by reviewing the device structure, including the peripheral design. At the same time, the new TO-247-4L package products, which feature 4 terminals, can accommodate an effective voltage of 1100V in a ‘Pollution Degree 2 environment’ by ensuring adequate creepage distance between pins. This enables support for higher voltage applications than conventional products.
Implementing creepage distance measures on the device side alleviates the design burden for manufacturers. On top, the TO-247-4L package achieves high-speed switching by including a Kelvin emitter terminal, resulting in even lower losses. In fact, when comparing the efficiency of the new TO-247-4L packages with conventional and standard products in a 3-phase inverter, loss is reduced by about 24% compared to standard products and by 35% over conventional products – contributing to higher efficiency in drive applications.
ROHM will continue to expand its lineup of high-performance IGBTs that contribute to greater miniaturization and high efficiency drive in automotive and industrial equipment applications.
Original – ROHM
-
LATEST NEWS / PRODUCT & TECHNOLOGY / SiC / WBG
STMicroelectronics Released an Advanced Galvanically Isolated Gate Drivers for IGBTs and SiC MOSFETs
2 Min ReadSTMicroelectronics’ STGAP3S family of gate drivers for silicon-carbide (SiC) and IGBT power switches combines ST’s latest robust galvanic isolation technology with optimized desaturation protection and flexible Miller-clamp architecture.
Featuring reinforced capacitive galvanic isolation between the gate-driving channel and the low-voltage control and interface circuitry, the STGAP3S withstands 9.6kV transient isolation voltage (VIOTM) with 200V/ns common-mode transient immunity (CMTI). With its state-of-the-art isolation, the STGAP3S enhances reliability in motor drives for industrial applications such as air conditioning, factory automation, and home appliances. The new drivers are also used in power and energy applications including charging stations, energy storage systems, power-factor correction (PFC), DC/DC converters, and solar inverters.
The STGAP3S product family includes different options with 10A and 6A current capability, each of them available with differentiated Under Voltage Lock-Out (UVLO) and desaturation intervention thresholds. This helps designers select the best device to match the performance of their chosen SiC MOSFET or IGBT power switches.
The Desaturation protection implements an overload and short-circuit protection for the external power switch providing the possibility to adjust the turn-off strategy using an external resistor to maximize the protection turn-off speed while avoiding excessive overvoltage spikes. The undervoltage-lockout protection prevents turn-on with insufficient drive voltage.
The driver’s integrated Miller Clamp architecture provides a pre-driver for an external N-channel MOSFET. Designers can thus leverage flexibility to select a suitable intervention speed that prevents induced turn-on and avoids cross conduction.
The available device variants allow a choice of 10A sink/source and 6A sink/source drive-current capability for optimum performance with the chosen power switch with desaturation-detection and UVLO thresholds optimized for IGBT or SiC technology. The fault conditions of desaturation, UVLO and overtemperature protection are notified with two dedicated open drain diagnostic pins.
Original – STMicroelectronics
-
GaN / LATEST NEWS / PRODUCT & TECHNOLOGY / WBG1 Min Read
EPC Space announced the launch of HEMTKY product line.
A HEMTKY is a HEMT, High Electron Mobility Transistor, with an embedded Schottky diode. The presence of an antiparallel Schottky diode in the HEMTKY structure minimizes third quadrant conduction losses absent GaN HEMT synchronous drive. Notable advantages are:
- Predictable conduction losses, no reverse recovery charge
- Reduced system sensitivity to half-bridge deadtime variance
- Reduced negative voltage stress on gate drivers
For 500-unit quantities, engineering models are priced at $212 USD each, while space level units are priced at $315 USD each.
EPC Space provides revolutionary high-reliability radiation-hardened enhancement-mode gallium nitride power management solutions for space and other harsh environments. Radiation hardened GaN-based power devices address critical spaceborne environments for applications such as power supplies, motor drives, ion thrusters, and more. eGaN is a registered trademark of Efficient Power Conversion Corporation, Inc.
Original – EPC Space
-
LATEST NEWS / PRODUCT & TECHNOLOGY / SiC / WBG3 Min Read
Nexperia announced that it has entered into a strategic partnership with KOSTAL, a leading automotive supplier, which will enable it to produce wide bandgap (WBG) devices that more closely match the exacting requirements of automotive applications. Under the terms of this partnership, Nexperia will supply, develop, and manufacture WBG power electronics devices which will be designed-in and validated by Kostal. The collaboration will initially focus on the development of SiC MOSFETs in topside cooled (TSC) QDPAK packaging for onboard chargers (OBC) in electric vehicles (EV).
KOSTAL Automobil Elektrik, with over a century of experience, is a key player in the global automotive industry. Nearly one in every two cars worldwide is equipped with KOSTAL’s products, including more than 4.5 million onboard chargers, contributing to advancements in electromobility. Ranked among the top 100 automotive suppliers globally, KOSTAL is recognized for its innovative, reliable, and cost-optimized solutions. Its long-standing partnerships with customers and employees reflect the company’s commitment to quality and collaboration.
“Nexperia has been a trusted supplier of silicon components to KOSTAL for many years and is delighted to enter into this strategic partnership that will now extend to wide bandgap devices”, according to Katrin Feurle, Senior Director and Head of SiC Discretes & Modules. “KOSTAL will assist in validating our devices in its charging applications, thereby providing us with the type of invaluable ‘real-world’ data that will allow us to further enhance their performance”.
“KOSTAL is extending its’ strategic SiC supply portfolio to support our growth path towards 2030 with a special dedication on E-Mobility applications for onroad and offroad applications” states Dr. Georg Mohr, Executive VP Purchasing & Supply Chain of the KOSTAL Group. “Under this strategic partnership, which reinforces our long- standing customer-supplier relationship, KOSTAL will leverage Nexperia’s expertise in wide bandgap technology, particularly their SiC MOSFETs, which we believe are among the best in the market. By sharing our insights from real-world EV charging applications, we aim to contribute to the development of even more optimized and tailored SiC devices that meet the specific demands of our next-generation solutions.”
Nexperia is among the few companies that is offering a comprehensive range of WBG semiconductor technologies, including SiC diodes and MOSFETs, as well as GaN e-mode and d-mode devices, alongside its established silicon portfolio. With a strong commitment to expanding its commercial WBG offerings, Nexperia is focused on delivering the most suitable products to meet the needs of an increasing range of applications. The company’s focus is to support the responsible use of electrical energy through innovative solutions. Nexperia continues to develop technologies that address the growing demand for efficiency and sustainability in power management.
Original – Nexperia
-
GaN / LATEST NEWS / PRODUCT & TECHNOLOGY / WBG2 Min Read
Infineon Technologies AG announced the launch of a new family of high-voltage discretes, the CoolGaN™ Transistors 650 V G5, further strengthening its Gallium Nitride (GaN) portfolio. Target applications for this new product family range from consumer and industrial switched-mode power supply (SMPS) such as USB-C adapters and chargers, lighting, TV, data center and telecom rectifiers to renewable energy and motor drives in home appliances.
The latest CoolGaN generation is designed as a drop-in replacement for the CoolGaN Transistors 600 V G1, enabling rapid redesign of existing platforms. The new devices provide improved figures of merit to ensure competitive switching performance in focus applications.
Compared to key competitors and previous product families from Infineon, the CoolGaN Transistors 650 V G5 offer up to 50 percent lower energy stored in the output capacitance (E oss), up to 60 percent improved drain-source charge (Q oss) and up to 60 percent lower gate charge (Q g). Combined, these features result in excellent efficiencies in both hard- and soft-switching applications. This leads to a significant reduction in power loss compared to traditional silicon technology, ranging from 20 to 60 percent depending on the specific use case.
These benefits allow the devices to operate at high frequencies with minimal power loss, resulting in superior power density. The CoolGaN Transitors 650 V G5 enable SMPS applications to be smaller and lighter or to increase the output power range in a given form factor.
The new high-voltage transistor product family offers a wide range of R DS(on) package combinations. Ten R DS(on) classes are available in various SMD packages, such as ThinPAK 5×6, DFN 8×8 , TOLL and TOLT. All products are manufactured on high-performance 8-inch production lines in Villach (Austria) and Kulim (Malaysia). In the future, CoolGaN will transition to 12-inch production. This will enable Infineon to further expand its CoolGaN capacity and ensure a robust supply chain in the GaN power market, which is expected to reach $2 billion by 2029, according to Yole Group.
A demo featuring the CoolGaN Transistors 650 V G5 will be showcased at electronica 2024 in Munich from November 12 to 15 (hall C3, booth 502).
Original – Infineon Technologies
-
GaN / LATEST NEWS / PRODUCT & TECHNOLOGY / WBG2 Min Read
Power Integrations introduced a new member of its InnoMux™-2 family of single-stage, independently regulated multi-output offline power supply ICs. The new device features the industry’s first 1700 V gallium nitride switch, fabricated using the company’s proprietary PowiGaN™ technology.
The 1700 V rating further advances the state-of-the-art for GaN power devices, previously set by Power Integrations’ own 900 V and 1250 V devices, both launched in 2023. The 1700 V InnoMux-2 IC easily supports 1000 VDC nominal input voltage in a flyback configuration and achieves over 90 percent efficiency in applications requiring one, two or three supply voltages.
Each output is regulated within one percent accuracy, eliminating post regulators and further improving system efficiency by approximately ten percent. The new device replaces expensive silicon carbide (SiC) transistors in power supply applications such as automotive chargers, solar inverters, three-phase meters and a wide variety of industrial power systems.
Radu Barsan, vice president of technology at Power Integrations, said, “Our rapid pace of GaN development has delivered three world-first voltage ratings in a span of less than two years: 900 V, 1250 V and now 1700 V. Our new InnoMux-2 ICs combine 1700 V GaN and three other recent innovations: independent, accurate, multi-output regulation; FluxLink™, our secondary-side regulation (SSR) digital isolation communications technology; and zero voltage switching (ZVS) without an active-clamp, which all but eliminates switching losses.”
Original – Power Integrations
-
LATEST NEWS / PRODUCT & TECHNOLOGY / SiC / WBG2 Min Read
Many industrial applications today are transitioning to higher power levels with minimized power losses, which can be achieved through increased DC link voltage. Infineon Technologies AG addresses this challenge by introducing the CoolSiC™ Schottky diode 2000 V G5, the first discrete silicon carbide diode on the market with a breakdown voltage of 2000 V. The product family is suitable for applications with DC link voltages up to 1500 VDC and offers current ratings from 10 to 80 A. This makes it ideal for higher DC link voltage applications such as in solar and EV charging applications.
The product family comes in a TO-247PLUS-4-HCC package, with 14 mm creepage and 5.4 mm clearance distance. This, together with a current rating of up to 80 A, enables a significantly higher power density. It allows developers to achieve higher power levels in their applications with only half the component count of 1200 V solutions. This simplifies the overall design and enables a smooth transition from multi-level topologies to 2-level topologies.
In addition, the CoolSiC Schottky diode 2000V G5 utilizes the .XT interconnection technology that leads to significantly lower thermal resistance and impedance, enabling better heat management. Furthermore, the robustness against humidity has been demonstrated in HV-H3TRB reliability tests. The diodes exhibit neither reverse recovery current nor forward recovery and feature a low forward voltage, ensuring enhanced system performance.
The 2000 V diode family is a perfect match for the CoolSiC MOSFETs 2000 V in the TO-247Plus-4 HCC package that Infineon introduced in spring 2024. The CoolSiC diodes 2000 V portfolio will be extended by offering them in the TO-247-2 package, which will be available in December 2024. A matching gate driver portfolio is also available for the CoolSiC MOSFETs 2000 V.
Original – Infineon Technologies
-
MCC Semi announced the latest innovation in their MOSFET lineup. The 100V wide SOA MCTL2D0N10YHR with split-gate trench technology satisfies the design demands of high-performance applications with ease. Balancing efficiency and reliability in harsh conditions is no longer an issue, thanks to this N-channel power MOSFET’s wide safe operating area (SOA) and a host of efficient characteristics.
This SOA comparison highlights significant differences in drain current between two 100V MOSFETs, MCTL300N10YB and MCTL2D0N10YHR, at 10ms pulse. This MOSFET’s wide SOA enhances safety and performance while overcoming common challenges engineers face when designing for high-power applications. It also provides a host of features that add up to ultimate efficiency and reliability. With a gate charge and on-resistance of 2mΩ, this MOSFET also optimizes energy use at every angle, reducing operational costs.
Designed to withstand junction temperatures of up to 175⁰C, this component delivers unquestionable performance in environments where lesser components would fail. Excellent thermal management is also assured, thanks to the TOLL package engineered for superior heat dissipation, which mitigates thermal-related issues. MCC’s 100V MOSFET is the ideal solution for diverse applications, including telecommunications, computing, audio amplification, and motor controls.
Features & Benefits:
- Wide SOA: Ensures safe operation across a broad range of conditions.
- Split-gate Trench (SGT) Technology: Provides enhanced performance and efficiency.
- Low On-Resistance: Maximizes efficiency by minimizing power losses.
- Low Conduction Losses: Reduces heat generation during operation.
- Low Gate Charge: Maximizes efficiency by minimizing switching losses.
- Low Gate Charge: Maximizes efficiency by minimizing switching losses.
- Excellent Thermal Performance: TOLL package facilitates superior heat dissipation.
Original – Micro Commercial Components
-
LATEST NEWS / PRODUCT & TECHNOLOGY2 Min Read
Vishay Intertechnology, Inc. introduced two new IGBT and MOSFET drivers in the compact, high isolation stretched SO-6 package. Delivering high peak output currents of 3 A and 4 A, respectively, the Vishay Semiconductors VOFD341A and VOFD343A offer high operating temperatures to +125 °C and low propagation delay of 200 ns maximum.
Consisting of an AlGaAs LED optically coupled to an integrated circuit with a power output stage, the optocouplers are intended for solar inverters and microinverters; AC and brushless DC industrial motor control inverters; and inverter stages for AC/DC conversion in UPS. The devices are ideally suited for directly driving IGBTs with ratings up to 1200 V / 100 A.
The high operating temperature of the VOFD341A and VOFD343A provides a higher temperature safety margin for more compact designs, while their high peak output current allows for faster switching by eliminating the need for an additional driver stage. The devices’ low propagation delay minimizes switching losses, while facilitating more precise PWM regulation.
The optocouplers’ high isolation package enables high working voltages up to 1.140 V, which allows for high voltage inverter stages, while still maintaining enough voltage safety margin. The RoHS-compliant devices offer high noise immunity of 50 kV/µs, which prevents fail functions in fast switching power stages.
Original – Vishay Intertechnology