-
LATEST NEWS / PRODUCT & TECHNOLOGY / SiC / WBG2 Min Read
Many industrial applications today are transitioning to higher power levels with minimized power losses, which can be achieved through increased DC link voltage. Infineon Technologies AG addresses this challenge by introducing the CoolSiC™ Schottky diode 2000 V G5, the first discrete silicon carbide diode on the market with a breakdown voltage of 2000 V. The product family is suitable for applications with DC link voltages up to 1500 VDC and offers current ratings from 10 to 80 A. This makes it ideal for higher DC link voltage applications such as in solar and EV charging applications.
The product family comes in a TO-247PLUS-4-HCC package, with 14 mm creepage and 5.4 mm clearance distance. This, together with a current rating of up to 80 A, enables a significantly higher power density. It allows developers to achieve higher power levels in their applications with only half the component count of 1200 V solutions. This simplifies the overall design and enables a smooth transition from multi-level topologies to 2-level topologies.
In addition, the CoolSiC Schottky diode 2000V G5 utilizes the .XT interconnection technology that leads to significantly lower thermal resistance and impedance, enabling better heat management. Furthermore, the robustness against humidity has been demonstrated in HV-H3TRB reliability tests. The diodes exhibit neither reverse recovery current nor forward recovery and feature a low forward voltage, ensuring enhanced system performance.
The 2000 V diode family is a perfect match for the CoolSiC MOSFETs 2000 V in the TO-247Plus-4 HCC package that Infineon introduced in spring 2024. The CoolSiC diodes 2000 V portfolio will be extended by offering them in the TO-247-2 package, which will be available in December 2024. A matching gate driver portfolio is also available for the CoolSiC MOSFETs 2000 V.
Original – Infineon Technologies
-
MCC Semi announced the latest innovation in their MOSFET lineup. The 100V wide SOA MCTL2D0N10YHR with split-gate trench technology satisfies the design demands of high-performance applications with ease. Balancing efficiency and reliability in harsh conditions is no longer an issue, thanks to this N-channel power MOSFET’s wide safe operating area (SOA) and a host of efficient characteristics.
This SOA comparison highlights significant differences in drain current between two 100V MOSFETs, MCTL300N10YB and MCTL2D0N10YHR, at 10ms pulse. This MOSFET’s wide SOA enhances safety and performance while overcoming common challenges engineers face when designing for high-power applications. It also provides a host of features that add up to ultimate efficiency and reliability. With a gate charge and on-resistance of 2mΩ, this MOSFET also optimizes energy use at every angle, reducing operational costs.
Designed to withstand junction temperatures of up to 175⁰C, this component delivers unquestionable performance in environments where lesser components would fail. Excellent thermal management is also assured, thanks to the TOLL package engineered for superior heat dissipation, which mitigates thermal-related issues. MCC’s 100V MOSFET is the ideal solution for diverse applications, including telecommunications, computing, audio amplification, and motor controls.
Features & Benefits:
- Wide SOA: Ensures safe operation across a broad range of conditions.
- Split-gate Trench (SGT) Technology: Provides enhanced performance and efficiency.
- Low On-Resistance: Maximizes efficiency by minimizing power losses.
- Low Conduction Losses: Reduces heat generation during operation.
- Low Gate Charge: Maximizes efficiency by minimizing switching losses.
- Low Gate Charge: Maximizes efficiency by minimizing switching losses.
- Excellent Thermal Performance: TOLL package facilitates superior heat dissipation.
Original – Micro Commercial Components
-
LATEST NEWS / PRODUCT & TECHNOLOGY2 Min Read
Vishay Intertechnology, Inc. introduced two new IGBT and MOSFET drivers in the compact, high isolation stretched SO-6 package. Delivering high peak output currents of 3 A and 4 A, respectively, the Vishay Semiconductors VOFD341A and VOFD343A offer high operating temperatures to +125 °C and low propagation delay of 200 ns maximum.
Consisting of an AlGaAs LED optically coupled to an integrated circuit with a power output stage, the optocouplers are intended for solar inverters and microinverters; AC and brushless DC industrial motor control inverters; and inverter stages for AC/DC conversion in UPS. The devices are ideally suited for directly driving IGBTs with ratings up to 1200 V / 100 A.
The high operating temperature of the VOFD341A and VOFD343A provides a higher temperature safety margin for more compact designs, while their high peak output current allows for faster switching by eliminating the need for an additional driver stage. The devices’ low propagation delay minimizes switching losses, while facilitating more precise PWM regulation.
The optocouplers’ high isolation package enables high working voltages up to 1.140 V, which allows for high voltage inverter stages, while still maintaining enough voltage safety margin. The RoHS-compliant devices offer high noise immunity of 50 kV/µs, which prevents fail functions in fast switching power stages.
Original – Vishay Intertechnology
-
LATEST NEWS / PRODUCT & TECHNOLOGY / Si2 Min Read
Toshiba Electronic Devices & Storage Corporation has expanded the lineup of 150V N-channel power MOSFETs with new six products that use the new generation process “U-MOSⅩ-H series.” Products in this series are suitable for the switching power supplies of industrial equipment such as data centers and communication base. The package of new products is a three-pin through hole type: TO-220 for “TK4R9E15Q5, TK7R2E15Q5 and TK9R6E15Q5” and TO-220SIS for “TK5R0A15Q5, TK7R4A15Q5 and TK9R7A15Q5.”
The new products use the U-MOSⅩ-H process to achieve low drain-source On-resistance. In particular, TK4R9E15Q5 features the excellent low drain-source On-resistance of 4.9mΩ (max). In addition, the new products uses high-speed diode (HSD) to improve reverse recovery characteristics, which are important for synchronous rectification applications, by reducing reverse recovery charge and faster reverse recovery time. Used in synchronous rectification applications, the new products reduce the power loss of switching power supplies and help improve efficiency.
The first product TPH9R00CQ5 which uses HSD, has approximately 74% less reverse recovery charge and approximately 44% faster reverse recovery time than Toshiba‘s existing product TPH9R00CQH, which does not use HSD. The U-MOSⅩ-H process using this HSD has applied to through hole type packages in addition to surface mount type packages.
The new products have reduced the drain source spike voltage generated between the drain and source when MOSFET is switching, helping to lower EMI in switching power supplies.
Toshiba will continue to promote the expansion of its power MOSFET lineup, which helps improve the efficiency of power supplies, thereby contributing to reducing the power consumption of equipment.
Applications
- Switching power supplies for communication equipment, etc. (high efficiency AC-DC converters, high efficiency DC-DC converters, etc.)
- Motor control equipment (motor drives, etc.)
Features
- Excellent low On-resistance:
TK4R9E15Q5 RDS(ON)=4.9mΩ (max) (VGS=10V) - Low reverse recovery charge:
TK9R6E15Q5 Qrr=32nC (typ.) (-dIDR/dt=100A/μs) - Fast reverse recovery time:
TK9R6E15Q5 trr=40ns (typ.) (-dIDR/dt=100A/μs)
Original – Toshiba
-
LATEST NEWS / PRODUCT & TECHNOLOGY3 Min Read
For next-generation power electronics, BASF has developed a polyphthalamide (PPA) that is especially suited for manufacturing housings of IGBT (insulated-gate bipolar transistor) semiconductors. Ultramid® Advanced N3U41 G6 addresses the growing demand for high-performance, reliable electronic components for e.g., electric vehicles, high-speed trains, smart manufacturing and the generation of renewable energy.
Semikron Danfoss, a global technology leader in power electronics, now uses the BASF PPA as housing in its Semitrans 10 IGBT which can be installed in inverters of photovoltaic and wind energy systems. Due to its outstanding chemical resistance and dimensional stability, the Ultramid® Advanced N grade enhances the robustness, long-term performance and reliability of these IGBTs, thus meeting growing needs for energy saving, higher power density and increased efficiency. IGBTs enable efficient switching and control of electrical circuits in power electronics.
“IGBTs are a key element of modern electronics, particularly in the renewable energy sector,” explains Jörn Grossmann from research and predevelopment at Semikron Danfoss. “IGBTs must operate at higher temperatures while maintaining long-term stability and performance. The Semitrans 10 has set a new benchmark for performance and efficiency benefiting from the unique properties of BASF’s PPA. We chose this material because of its extraordinary electrical isolation even in harsh environments and because of its excellent robustness against short-term temperature peaks in the assembly process.” The combination of high-performance material and smart design allows for faster switching speeds, lower conduction losses, and improved thermal management, thus addressing key needs in power electronics.
In today’s IGBTs, BASF’s proven Ultradur® (PBT: polybutylene terephthalate) is widely used. The new PPA is designed to meet the stringent requirements of next-generation IGBTs for rapidly evolving power electronics. They demand materials that can withstand higher temperatures, provide sustained electrical insulation, and maintain dimensional stability under challenging environmental conditions like humidity, dust and dirt.
The laser-sensitive Ultramid® Advanced N3U41G6 with non-halogenated flame retardant combines high thermal stability with low water uptake and excellent electrical properties. It is characterized by a high CTI (Comparative Tracking Index) of 600 (acc. to IEC 60112): This supports miniaturization of IGBTs by lower creepage and better insulation than materials so far used for power switches. The UL-certified grade shows an excellent electrical RTI (Relative Temperature Index) value of 150°C.
“BASF’s PPA compound is globally available and ready for sampling”, says Jochen Seubert, senior application expert for power electronics at BASF. “Backed by our customer-focused technical support in part development, we expect this innovative material to significantly contribute to the advancement of power electronics, supporting the global transition to renewable energies.” For manufacturing of IGBTs, the BASF PPA is compatible with potting materials used to assemble the semi-conductors with metal pins and clamps after injection molding.
BASF’s polyphthalamide portfolio is based on the six polymers Ultramid® Advanced N (PA9T), Ultramid® Advanced T1000 (PA6T/6I), Ultramid® Advanced T2000 (PA6T/66), Ultramid® T KR (PA6T/6), Ultramid® T6000 (PA66/6T) and Ultramid® T7000 (PA/PPA). They open the door to the next generation of lightweight, high-performance plastic components in many different sectors including the automotive industry, electronics and electric devices, mechanical engineering and consumer goods.
The PPA portfolio is available globally and complemented by BASF’s Ultrasim® simulation tool and extensive experience in application development. It includes more than 50 compounded grades for injection molding and extrusion, products with or without flame retardants. The compounds are available in different colors, from colorless to laser-markable black, with short-glass, long-glass or mineral fiber reinforcement, and with various heat stabilizers.
Original – BASF
-
GaN / LATEST NEWS / PRODUCT & TECHNOLOGY / WBG2 Min Read
Navitas Semiconductor announced GaNSlim™, a new generation of highly-integrated GaN power ICs that will further simplify and speed the development of small form factor, high-power-density applications by offering the highest level of integration and thermal performance.
GaNSlim enables the simplest, fastest, and smallest system design by integrating drive, control, and protection, with integrated EMI control and loss-less current sensing, all within a high thermal performance proprietary DPAK-4L package. Additionally, with an ultra-low startup current below 10 µA, GaNSlim devices are compatible with industry-standard SOT23-6 controllers and eliminate HV startup.
Integrated features such as loss-less current sensing eliminate external current sensing resistors and optimize system efficiency and reliability. Over-temperature protection ensures system robustness and auto sleep-mode increases light and no-load efficiency. Autonomous turn-on/off slew rate control maximizes efficiency and power density while reducing external component count, system cost and EMI.
GaNSlim features a patented, 4-pin, high-thermal-performance, low-profile, low-inductance, DPAK package. This package enables 7 °C lower temperature operation versus conventional alternatives, supporting high-power-density designs with ratings up to 500 W. Target applications include chargers for mobile devices and laptops, TV power supplies, lighting, etc.
“Our GaN focus is on integrated devices that enable high-efficiency, high-performance power conversion with the simplest designs and the shortest possible time-to-market,” says Reyn Zhan, Sr. Manager of Technical Marketing. “Our new GaNSlim portfolio – built on integration, ease-of-use, and low-cost manufacturing methods, – continues to grow the customer pipeline with over 50 new projects already identified. GaNSlim increases our GaN addressable market by enabling lower system costs compared to silicon designs for many applications, targeting applications under 500 W across mobile, consumer and home appliance.”
Devices in the NV614x GaNSlim family are rated at 700 V with RDS(ON) ratings from 120 mΩ to 330 mΩ and are available in versions optimized for both isolated and non-isolated topologies.
As with other Navitas GaN ICs, GaNSlim devices are supplied with an industry-leading twenty-year warranty, while demo boards for QR flyback, single-stage PFC, boost PFC plus QR flyback and TV power supply designs allow for rapid evaluation and selection of the optimum device for a given application.
Original – Navitas Semiconductor
-
LATEST NEWS / PRODUCT & TECHNOLOGY2 Min Read
MCC Semi unveiled the latest selection of 5000W TVS diodes designed to provide superior protection against transient voltage spikes. Whether caused by lightning or other electrical disturbances, voltage surges can add up to costly damage and system failures without proper safeguards in place. That’s where our 5000W TVS solutions come in.
With a broad range of voltages — from 11V to 400V — and a compact yet powerful SMC package, these transient voltage suppressors (TVS) optimize space on the board without sacrificing performance.
Leveraging glass-passivated junction technology, these TVS diodes ensure the highest durability and reliability in demanding environments at operating junction temperatures of up to 175°C. They also boast IEC 61000-4-2 ESD ratings of 30kV for air and contact discharge for enhanced protection during electrostatic discharge events.
Rapid response times with capacitance typically less than 3,000 pF and impressive clamping capabilities assure sensitive electronic components are adequately protected, and a leakage current less than 2µA above 11V reduces power losses.
Available in unidirectional and bidirectional configurations, MCC’s 5000W TVS diodes meet diverse application needs while reducing maintenance costs and boosting overall reliability.
Features & Benefits:
- IEC 61000-4-2 ESD Protection: 30kV (Air) and 30kV (Contact) for solid electrostatic discharge protection.
- Maximum Operating Junction Temperature: Rated up to 175°C for reliable operation in high-temperature environments.
- Ultra-Fast Response Time: Capacitance typically less than 3000 pF from 0V to breakdown voltage minimum, ensuring immediate protection.
- Low Leakage Current: Typical ID less than 2µA from 11V to minimize power loss.
Original – Micro Commercial Components
-
In battery-powered applications such as motor drives and switched-mode power supplies (SMPS), the power supply architecture often requires that a module can be disconnected from the main supply rail when a fault occurs in that module. To achieve this functionality, it is common to use high-side disconnect switches (e.g. MOSFETs) to prevent a load short circuit from affecting the battery.
Infineon Technologies AG introduced the EiceDRIVER™ 1EDL8011, a high-side gate driver designed to protect battery-powered applications such as cordless power tools, robotics, e-bikes, and vacuum cleaners in the event of a fault.
The device provides fast turn-on and turn-off of high-side N-channel MOSFETs with its high gate current capabilities. It consists of an integrated charge pump with an external capacitor to provide strong start-up. The internal charge pump provides the MOSFET gate voltage when the operating input voltage is low. The gate driver IC manages inrush current and provides fault protection. Undervoltage Lockout (UVLO) protection at input voltage prevents the device from operating under hazardous conditions. The driver is available in a DSO-8 package, making it ideal for space-constrained designs. It includes overcurrent protection (OCP), adjustable current setting threshold, time delay and a safe start-up mechanism with flexible blanking during MOSFET turn-on transitions.
The 1EDL8011 has a wide operating voltage range of 8 V to 125 V and a high gate sinking current of up to 1 A, allowing for efficient switching. Additionally, the product has an extremely low off-mode quiescent current of 1 µA, helping to minimize power consumption in sleep mode. The device also includes a V DS sense feature that is used to trigger an overcurrent shutdown by monitoring the drain-to-source voltage of the disconnect MOSFET.
Infineon will be showcasing a demo featuring the 1EDL8011 at its global technology forum OktoberTech™ 2024 in Silicon Valley on 17 October. The 1EDL8011 is available now. Further information can be found at www.infineon.com/1edl8011.
Original – Infineon Technologies