-
LATEST NEWS / PRODUCT & TECHNOLOGY / Si2 Min Read
Toshiba Electronic Devices & Storage Corporation (“Toshiba”) has launched “TPH3R10AQM,” a 100V N-channel power MOSFET fabricated with Toshiba’s latest-generation process, U-MOS X-H. The product targets applications such as switching circuits and hot swap circuits on the power lines of industrial equipment used for data centers and communications base stations.
TPH3R10AQM has industry-leading 3.1mΩ maximum drain-source On-resistance, 16% lower than Toshiba’s 100V product, “TPH3R70APL,” which uses the earlier generation process. By the same comparison, TPH3R10AQM has expanded its safe operating area by 76% making it suitable for linear mode operation. Reducing the On-resistance and expanding the linear operating range in the safe operating area reduce the number of parallel connections. Furthermore, its gate threshold voltage range of 2.5V to 3.5V, makes it less likely to malfunction due to gate voltage noise.
The new product uses the highly footprint compatible SOP Advance(N) package.Toshiba will continue to expand its line-up of power MOSFETs that can increase the efficiency of power supplies by reducing loss, and help lower equipment power consumption.
Applications
- Power supplies for communications equipment such as for data centers and communications base stations
- Switching power supplies (High efficiency DC-DC converters, etc.)
Features
- Featuring Industry-leading excellent low On-resistance: RDS(ON)=3.1mΩ (max) (VGS=10V)
- Wide safe operating area
- High channel temperature rating: Tch (max)=175°C
Original – Toshiba
-
GaN / LATEST NEWS / PRODUCT & TECHNOLOGY / SiC / WBG2 Min Read
Kulicke and Soffa Industries, Inc. announced the launch of several new systems and capabilities serving high-volume semiconductor and fast-growing power-semiconductor applications.
POWERCOMM™ and POWERNEXX™ represent the next evolution in advanced wire bonding systems and are designed with a new generation of intuitive advanced process capabilities which deliver maximum levels of performance, efficiency, and productivity. Additionally, both systems deliver enhanced mean time between assists (MTBA), with automated recovery features that improve the machine to operator ratio and better support localization of semiconductor assembly.
The POWERCOMM™ advanced wire bonding solution is designed to support high-volume discrete and low-pin count devices commonly used in applications such as data centers, automotive, industrial automation, smartphones, wearables and connected devices.
The POWERNEXX™ advanced wire bonding solution is optimized for higher density QFN packages with widths of up to 100mm. The improved illumination design on POWERNEXX™ allows faster alignment time through its Pattern Recognition System (PRS). Faster alignment and advanced process capabilities deliver the industry leading UPH and lowest Cost-of-Ownership.
In addition to the new POWERCOMM™ and POWERNEXX™ systems, K&S extends its leadership in wedge bond applications with new High-Power-Interconnect (HPI) capabilities addressing the emerging needs of power devices. HPI capabilities are becoming increasingly necessary to assemble applications such as inverters, battery assembly and charging infrastructure which support the growth and increasing efficiency requirements of sustainable energy and electric vehicle applications. The need for more efficient and higher-current applications are driving rapid changes to the power semiconductor market by increasing demand in emerging compound semiconductors, such as Silicon Carbide (SiC) and Gallium Nitride (GaN), but are also demanding new capabilities to support next-generation battery assembly and are accelerating the transition from aluminum wire and ribbon, to copper wire and ribbon. Next generation HPI capabilities are being introduced across Kulicke & Soffa’s leading wedge bonder portfolio today.
“Our rich history of innovation and ongoing development priorities are enabling us to provide additional value to the increasingly critical assembly process. This recent set of new wire bonding systems and capabilities will better enable customers to optimize productivity, improve material handling capabilities and significantly lower cost-of-ownership,” said Shawn Sarbacker, Kulicke and Soffa’s Vice President of Ball Bonder Business Unit.
Original – Kulicke and Soffa Industries
-
LATEST NEWS / PRODUCT & TECHNOLOGY / WBG2 Min Read
Orbray Co., Ltd. and MIRISE Technologies Corporation have begun collaborating on vertical diamond power devices that will contribute to carbon neutrality.
Over the three-year period of this project, Orbray and MIRISE Technologies will use their respective technologies, resources, and expertise in diamond substrates and power devices to develop the technologies needed to deploy vertical diamond power devices in a wide range of electric vehicles in the future.
In this research collaboration, Orbray will be responsible for developing a p-type conductive diamond substrate, while MIRISE Technologies will take charge of developing a high-voltage operating device structure to demonstrate the feasibility of a vertical diamond power device. At the end of this project, the companies are planning to discuss the next stage of collaboration, such as further research and development.
As the automobile industry increasingly shifts to electric vehicles worldwide to achieve carbon neutrality, the development of next-generation automotive semiconductors is essential to improve the fuel efficiency and power consumption of electric vehicles, and reduce battery costs. Compared with current mainstream semiconductor materials such as Si (silicon), SiC (silicon carbide), and GaN (gallium nitride), diamond is known as the “ultimate semiconductor material” because it has higher voltage operating capability and superior thermal conductivity (heat dissipation). In the future, the development and mass production of next-generation automotive semiconductors using diamond is expected to improve the fuel efficiency and power consumption of electric vehicles, and reduce battery costs.
Orbray and MIRISE Technologies will leverage their respective strengths to develop next-generation in-vehicle semiconductors through vertical power devices, and thereby contribute to carbon neutrality.
Original – Orbray