-
LATEST NEWS / PRODUCT & TECHNOLOGY / SiC / WBG1 Min Read
Toshiba Electronic Devices & Storage Corporation has launched the “TRSxxx65H series,” the company’s third and latest generation of silicon carbide (SiC) Schottky barrier diodes (SBDs) for industrial equipment. Volume shipments of the first 12 products, all 650V, start today, with seven products housed in TO-220-2L packages and five in DFN8×8 packages.
The new products use a new metal in a third generation SiC SBD chip that optimizes the junction barrier Schottky (JBS) structure of the second generation products. They achieve industry-leading low forward voltage of 1.2V (Typ.), 17% lower than the 1.45V (Typ.) of the previous generation.
They also improve the trade-offs between forward voltage and total capacitive charge, and between forward voltage and reverse current, which reduces power dissipation and contributes to high efficiency of equipment.
Applications
- Switching power supplies
- EV charging stations
- Photovoltaic inverters
Features
- Industry-leading low forward voltage: VF=1.2V (Typ.) (IF=IF(DC))
- Low reverse current:
TRS6E65H IR=1.1μA (Typ.) (VR=650V) - Low total capacitive charge:
TRS6E65H QC=17nC (Typ.) (VR=400V, f=1MHz)
Original – Toshiba
-
GaN / LATEST NEWS / PRODUCT & TECHNOLOGY / WBG2 Min Read
STMicroelectronics has begun volume production of e-mode PowerGaN HEMT (high-electron-mobility transistor) devices that simplify the design of high-efficiency power-conversion systems. The STPOWER™ GaN transistors raise performance in applications such as wall adapters, chargers, lighting systems, industrial power supplies, renewable energy applications, and in automotive electrification.
The first two products in the family, the SGT120R65AL and SGT65R65AL, are industrial-qualified 650V normally-off G-HEMT™ in a PowerFLAT 5×6 HV surface-mount package. They have current ratings of 15A and 25A, respectively, with typical on-resistance (RDS(on)) of 75mΩ and 49mΩ at 25°C.
Also, 3nC and 5.4nC total gate charge and low parasitic capacitances ensure minimal turn-on/turn-off energy losses. A Kelvin source connection allows optimized gate driving. In addition to the reduced size and weight of the power supplies and adapters, the two new GaN transistors provide higher efficiency, lower operating temperature, and extended life time.
In the coming months, ST will introduce new PowerGaN variants, i.e. automotive-qualified devices, as well as additional power-package options including PowerFLAT 8×8 DSC and LFPAK 12×12 for high power applications.
ST’s G-HEMT devices facilitate the transition to GaN wide-bandgap technology in power conversion. GaN transistors with the same breakdown voltage and RDS(on) as silicon alternatives can achieve lower total gate charge and parasitic capacitances, with zero reverse-recovery charge.
These properties raise efficiency and enhance switching performance, allowing higher switching frequency that permits smaller passive components thereby increasing power density. Applications can therefore become smaller with higher performance. In the future, GaN is also expected to enable new power-conversion topologies that will further improve efficiency and decrease power losses.
Original – STMicroelectronics
-
GaN / LATEST NEWS / PRODUCT & TECHNOLOGY / WBG2 Min Read
STMicroelectronics’ first galvanically isolated gate driver for gallium-nitride (GaN) transistors, the STGAP2GS, trims dimensions and bill-of-materials costs in applications that demand superior wide-bandgap efficiency with robust safety and electrical protection.
The single-channel driver can be connected to a high-voltage rail up to 1200V, or 1700V with the STGAP2GSN narrow-body version, and provides gate-driving voltage up to 15V. Capable of sinking and sourcing up to 3A gate current to the connected GaN transistor, the driver ensures tightly controlled switching transitions up to high operating frequencies.
With minimal propagation delay across the isolation barrier, at just 45ns, the STGAP2GS ensures fast dynamic response. In addition, dV/dt transient immunity of ±100V/ns over the full temperature range guards against unwanted transistor gate change. The STGAP2GS is available with separate sink and source pins for easy tuning of the gate-driving operation and performance.
Saving the need for discrete components to provide optical isolation, the STGAP2GS driver eases the adoption of efficient and robust GaN technology in various consumer and industrial applications. These include power supplies in computer servers, factory-automation equipment, motor drivers, solar and wind power systems, home appliances, domestic fans, and wireless chargers.
In addition to integrating galvanic isolation, the driver also features built-in system protection including thermal shutdown and under-voltage lockout (UVLO) optimized for GaN technology, to ensure reliability and ruggedness.
Two demonstration boards, the EVSTGAP2GS and EVSTGAP2GSN, combine the standard STGAP2GS and narrow STGAP2GSN with ST’s SGT120R65AL 75mΩ, 650V enhancement-Mode GaN transistors to help users evaluate the drivers’ capabilities.
The STGAP2GS in SO-8 widebody package, and the STGAP2GSN SO-8 narrow version, are available now, priced from $1.42 for orders of 1000 pieces.
Please visit www.st.com/stgap2gs for more information.
Original – STMicroelectronics
-
LATEST NEWS / PRODUCT & TECHNOLOGY / Si2 Min Read
Toshiba Electronic Devices & Storage Corporation (“Toshiba”) has launched “TPH3R10AQM,” a 100V N-channel power MOSFET fabricated with Toshiba’s latest-generation process, U-MOS X-H. The product targets applications such as switching circuits and hot swap circuits on the power lines of industrial equipment used for data centers and communications base stations.
TPH3R10AQM has industry-leading 3.1mΩ maximum drain-source On-resistance, 16% lower than Toshiba’s 100V product, “TPH3R70APL,” which uses the earlier generation process. By the same comparison, TPH3R10AQM has expanded its safe operating area by 76% making it suitable for linear mode operation. Reducing the On-resistance and expanding the linear operating range in the safe operating area reduce the number of parallel connections. Furthermore, its gate threshold voltage range of 2.5V to 3.5V, makes it less likely to malfunction due to gate voltage noise.
The new product uses the highly footprint compatible SOP Advance(N) package.Toshiba will continue to expand its line-up of power MOSFETs that can increase the efficiency of power supplies by reducing loss, and help lower equipment power consumption.
Applications
- Power supplies for communications equipment such as for data centers and communications base stations
- Switching power supplies (High efficiency DC-DC converters, etc.)
Features
- Featuring Industry-leading excellent low On-resistance: RDS(ON)=3.1mΩ (max) (VGS=10V)
- Wide safe operating area
- High channel temperature rating: Tch (max)=175°C
Original – Toshiba
-
GaN / LATEST NEWS / PRODUCT & TECHNOLOGY / SiC / WBG2 Min Read
Kulicke and Soffa Industries, Inc. announced the launch of several new systems and capabilities serving high-volume semiconductor and fast-growing power-semiconductor applications.
POWERCOMM™ and POWERNEXX™ represent the next evolution in advanced wire bonding systems and are designed with a new generation of intuitive advanced process capabilities which deliver maximum levels of performance, efficiency, and productivity. Additionally, both systems deliver enhanced mean time between assists (MTBA), with automated recovery features that improve the machine to operator ratio and better support localization of semiconductor assembly.
The POWERCOMM™ advanced wire bonding solution is designed to support high-volume discrete and low-pin count devices commonly used in applications such as data centers, automotive, industrial automation, smartphones, wearables and connected devices.
The POWERNEXX™ advanced wire bonding solution is optimized for higher density QFN packages with widths of up to 100mm. The improved illumination design on POWERNEXX™ allows faster alignment time through its Pattern Recognition System (PRS). Faster alignment and advanced process capabilities deliver the industry leading UPH and lowest Cost-of-Ownership.
In addition to the new POWERCOMM™ and POWERNEXX™ systems, K&S extends its leadership in wedge bond applications with new High-Power-Interconnect (HPI) capabilities addressing the emerging needs of power devices. HPI capabilities are becoming increasingly necessary to assemble applications such as inverters, battery assembly and charging infrastructure which support the growth and increasing efficiency requirements of sustainable energy and electric vehicle applications. The need for more efficient and higher-current applications are driving rapid changes to the power semiconductor market by increasing demand in emerging compound semiconductors, such as Silicon Carbide (SiC) and Gallium Nitride (GaN), but are also demanding new capabilities to support next-generation battery assembly and are accelerating the transition from aluminum wire and ribbon, to copper wire and ribbon. Next generation HPI capabilities are being introduced across Kulicke & Soffa’s leading wedge bonder portfolio today.
“Our rich history of innovation and ongoing development priorities are enabling us to provide additional value to the increasingly critical assembly process. This recent set of new wire bonding systems and capabilities will better enable customers to optimize productivity, improve material handling capabilities and significantly lower cost-of-ownership,” said Shawn Sarbacker, Kulicke and Soffa’s Vice President of Ball Bonder Business Unit.
Original – Kulicke and Soffa Industries