• Coherent Announced Launch of 200 mm Silicon Carbide Epitaxial Wafers

    Coherent Announced Launch of 200 mm Silicon Carbide Epitaxial Wafers

    2 Min Read

    Coherent Corp. announced the launch of its 200 mm silicon carbide epitaxial wafers. Substrate and epi-wafer shipments from the company at 350 micron and 500 micron thickness are now underway.

    As a dedicated manufacturer of both SiC substrates and epitaxial wafers, Coherent combines these elements to deliver exceptional quality, performance, and reliability. The new 200 mm SiC epi-wafers are engineered with cutting-edge thickness and doping uniformity, setting new industry standards and supporting the production of superior SiC power semiconductors.

    “With our advanced technology, we are not only enhancing the quality of SiC devices but also addressing the growing demand for 200 mm for efficient power-conversion components in critical sectors,” said Gary Ruland, Vice President and General Manager of the SiC Materials Business Unit.

    SiC devices are integral to power conversion in electric and hybrid vehicles, energy infrastructure, and high-power EV chargers. The transition from 150 mm to 200 mm diameter wafers responds to the increasing demand for SiC semiconductors, allowing manufacturers to produce more devices per wafer. This shift is expected to enhance productivity and reduce the cost of SiC devices, benefiting a wide range of applications.

    By adopting larger wafers, SiC device manufacturers can achieve higher yields and improved cost efficiency because of a 1.8x increase in usable area per wafer. The implementation of state-of-the-art 200 mm tooling brings additional advantages while aligning with the industry’s drive for greater performance and reduced operational costs.

    Original – Coherent

    Comments Off on Coherent Announced Launch of 200 mm Silicon Carbide Epitaxial Wafers
  • Axus Technology Introduced Industry’s Lowest Cost of Ownership for CMP Processes on 200mm SiC Wafers

    Axus Technology Introduced Industry’s Lowest Cost of Ownership for CMP Processes on 200mm SiC Wafers

    2 Min Read

    Axus Technology, a leading global provider of chemical mechanical planarization (CMP) equipment, critical for semiconductor and compound semiconductor fabrication, announced its flagship CapstoneÆ CS200 platform tools offer the industry’s lowest cost of ownership (CoO) for CMP processes on 200mm silicon carbide (SiC) wafers. Compared to its closest competitor, Axus’s small-footprint Capstone delivers twice the throughput at less than half the total cost per wafer.

    Yole Group forecasts the overall SiC manufacturing tool market to top US$4.4 billion by 2029. “The unique properties of SiC require specialized manufacturing tools and lines for processing power SiC devices,” the market analyst firm noted earlier this year. Axus anticipated this need, designing the state-of-the-art Capstone from the ground up to deliver advanced processing capabilities for SiC in power electronics and other applications.

    “Many 200mm fabs are looking to upgrade their installed base of CMP tools to products with leading-edge capability and functionality. Our ability to deliver industry-low CoO further underscores our strong market position and capacity to support this shift,” said Axus Technology CEO Dan Trojan. “Capstone features a streamlined workflow and integrated cleaning capability, so it requires half the process steps of older CMP tools. This allows customers to greatly lower their capex investment.”

    Key Capstone CoO advantages vs. competitor

    • Throughput: 2.5x wafers per hour
    • Power consumption: 60% lower
    • DI water consumption: 80% lower
    • Footprint: 45% smaller
    • Capex cost per wafer: 65% lower
    • Total cost per wafer: 50% lower

    Another factor contributing to Capstone’s lower CoO is its built-in Process Temperature Control (PTC) technology, which enables processing at higher pressures and speeds without exceeding temperature limits of polishing pads and other sensitive components. This feature is vital for SiC and other materials with high hardness and planarization challenges that necessitate more aggressive process conditions.

    Axus built its proprietary CoO model using its own system specifications, publicly available specs for competitive tools, actual consumables costs, and real-world performance data supplied by customers. The comprehensive model factors in all CoO contributors: process variables (polish time and removal rates), polishing and cleaning consumables, power and deionized (DI) water usage, system footprint, and equipment capex including cost, utilization and wafer capacity.

    Original – Axus Technology

    Comments Off on Axus Technology Introduced Industry’s Lowest Cost of Ownership for CMP Processes on 200mm SiC Wafers
  • Toshiba Enhances SiC Diode Portfolio with Ten New 1200V SBDs

    Toshiba Enhances SiC Diode Portfolio with Ten New 1200V SBDs

    1 Min Read

    Toshiba Electronics Europe GmbH enhances its silicon carbide (SiC) diode portfolio with ten new 1200V Schottky barrier diodes (SBDs). The TRSxxx120Hx series, comprising five products housed in TO-247-2L packages and five in TO-247 packages, helps designers improve the efficiency of industrial equipment, including photovoltaic (PV) inverters, electric vehicle (EV) charging stations, and switching power supplies.

    By implementing an enhanced junction barrier Schottky (JBS) structure, the TRSxxx120Hx series allows a very low forward voltage (VF) of just 1.27V (typ.). The merged PiN-Schottky incorporated into a JBS structure reduces diode losses under high current conditions. The TRS40N120H of the new series accepts a forward DC current (IF(DC)) of 40A (max) and a non-repetitive peak forward surge current (IFSM) of 270A (max), with the maximum case temperature (TC) of all devices being +175°C.

    Combined with the lower capacitive charge and leakage current, the products help improve system efficiency and simplify thermal design. For instance, at a reverse voltage (VR) of 1200V, the TRS20H120H diode housed in the TO-247-2L package provides a total capacitive charge (QC) of 109nC and reverse current (IR) of 2µA.

    Original – Toshiba

    Comments Off on Toshiba Enhances SiC Diode Portfolio with Ten New 1200V SBDs
  • Canon Announced Release a New Semiconductor Lithography System for Processing Wafers

    Canon Announced Release a New Semiconductor Lithography System for Processing Wafers

    2 Min Read

    Canon Inc. announced the release of the FPA-3030i6 i-line stepper, a new semiconductor lithography system for processing wafers with a diameter of 8 inches (200 mm) or smaller.

    The FPA-3030i6 employs a newly developed projection lens that boasts high transmittance and high-durability. The system reduces lens aberration for high exposure dose processes and improves productivity by shortening exposure time.

    The lens is made of high-transmittance glass material that reduces lens aberrations occurring during exposure by more than 50% when compared to previous stepper models. Higher transmittance also helps reduce exposure time while maintaining pattern fidelity, even under high exposure dose conditions.

    Improving lens transmittance will also increase exposure intensity and shorten the exposure time required for each process. The FPA-3030i6 standard productivity for 8 inch (200 mm) wafers has increased to 130 wafers per hour from 123 for the previous stepper models.

    Additionally, since the lens is highly durable, lens transmittance decrease over time is reduced and productivity can be maintained over the life of the system.

    The NA (numerical aperture) range has also been expanded from 0.45~0.63 in the previous model to 0.30~0.63. Allowing for a smaller NA enables customers to select the optimum NA for each device layer.

    Optional products including a wafer handling system for special substrates are available for order to meet users’ manufacturing needs for various emerging semiconductor devices including high-power and high-efficiency green devices.

    The FPA-3030i6 is designed to support a wider range of device fabrication thanks to a variety of available process options for silicon (Si) as well as sapphire and compound semiconductor materials such as silicon carbide (SiC), gallium nitride (GaN) and gallium arsenide (GaAs) substrates.

    Canon will offer wafer feeding options enabling handling of substrates from 2 inches (50 mm) to 8 inches (200 mm) in diameter, as well as thick, thin and warped substrate handling.

    Original – Canon

    Comments Off on Canon Announced Release a New Semiconductor Lithography System for Processing Wafers
  • STMicroelectronics Introduced Generation 4 STPOWER SiC MOSFET Technology

    STMicroelectronics Introduced Generation 4 STPOWER SiC MOSFET Technology

    4 Min Read

    STMicroelectronics introduced its fourth generation STPOWER silicon carbide (SiC) MOSFET technology. The Generation 4 technology brings new benchmarks in power efficiency, power density and robustness. While serving the needs of both the automotive and industrial markets, the new technology is particularly optimized for traction inverters, the key component of electric vehicle (EV) powertrains. The company plans to introduce further advanced SiC technology innovations through 2027 as a commitment to innovation.

    “STMicroelectronics is committed to driving the future of electric mobility and industrial efficiency through our cutting-edge silicon carbide technology. We continue to advance SiC MOSFET technology with innovations in the device, advanced packages, and power modules,” said Marco Cassis, President, Analog, Power & Discrete, MEMS and Sensors Group. “Together with our vertically integrated manufacturing strategy, we are delivering industry leading SiC technology performance and a resilient supply chain to meet the growing needs of our customers and contribute to a more sustainable future.”

    As the market leader in SiC power MOSFETs, ST is driving further innovation to exploit SiC’s higher efficiency and greater power density compared to silicon devices. This latest generation of SiC devices is conceived to benefit future EV traction inverter platforms, with further advances in size and energy-saving potential. While the EV market continues to grow, challenges remain to achieve widespread adoption and car makers are looking to deliver more affordable electric cars.

    800V EV bus drive systems based on SiC have enabled faster charging and reduced EV weight, allowing car makers to produce vehicles with longer driving ranges for premium models. ST’s new SiC MOSFET devices, which will be made available in 750V and 1200V classes, will improve energy efficiency and performance of both 400V and 800V EV bus traction inverters, bringing the advantages of SiC to mid-size and compact EVs — key segments to help achieve mass market adoption.

    The new generation SiC technology is also suitable for a variety of high-power industrial applications, including solar inverters, energy storage solutions and datacenters, significantly improving energy efficiency for these growing applications.

    ST has completed qualification of the 750V class of the fourth generation SiC technology platform and expects to complete qualification of the 1200V class in the first quarter of 2025. Commercial availability of devices with nominal voltage ratings of 750V and 1200V will follow, allowing designers to address applications operating from standard AC-line voltages up to high-voltage EV batteries and chargers.

    ST’s Generation 4 SiC MOSFETs provide higher efficiency, smaller components, reduced weight, and extended driving range compared to silicon-based solutions. These benefits are critical for achieving widespread adoption of EVs and leading EV manufacturers are engaged with ST to introduce the Generation 4 SiC technology into their vehicles, enhancing performance and energy efficiency. While the primary application is EV traction inverters, ST’s Generation 4 SiC MOSFETs are also suitable for use in high-power industrial motor drives, benefiting from the devices’ improved switching performance and robustness.

    This results in more efficient and reliable motor control, reducing energy consumption and operational costs in industrial settings. In renewable energy applications, the Generation 4 SiC MOSFETs enhance the efficiency of solar inverters and energy storage systems, contributing to more sustainable and cost-effective energy solutions. Additionally, these SiC MOSFETs can be utilized in power supply units for server datacenters for AI, where their high efficiency and compact size are crucial for the significant power demands and thermal management challenges.

    To accelerate the development of SiC power devices through its vertically integrated manufacturing strategy, ST is developing multiple SiC technology innovations in parallel to advance power device technologies over the next three years. The fifth generation of ST SiC power devices will feature an innovative high-power density technology based on planar structure.  ST is at the same time developing a radical innovation that promises outstanding on-resistance RDS(on) value at high temperatures and further RDS(on) reduction, compared to existing SiC technologies.

    ST will attend ICSCRM 2024, the annual scientific and industry conference exploring the newest achievements in SiC and other wide bandgap semiconductors. The event, from September 29 to October 04, 2024, in Raleigh, North Carolina will include ST technical presentations and an industrial keynote on ‘High volume industrial environment for leading edge technologies in SiC’.

    Original – STMicroelectronics

    Comments Off on STMicroelectronics Introduced Generation 4 STPOWER SiC MOSFET Technology
  • MCC Semi Expands Product Portfolio with 1200V Auto-Grade Trench Field-Stop IGBT

    MCC Semi Expands Product Portfolio with 1200V Auto-Grade Trench Field-Stop IGBT

    2 Min Read

    MCC released 1200V Auto-Grade Trench Field-Stop IGBT engineered for demanding automotive applications. MIS80N120NT1YHE3 delivers reliable switching where other components fall short, minimizing losses while maintaining thermal performance.

    Its super TO-220 package design boasts a junction-to-case thermal resistance of only 0.17K/W for maximum heat dissipation in high-voltage scenarios. But the superior thermal performance doesn’t stop there. With a low saturated VCE of just 2.25V and operating junction temperature of up to 150°C, this IGBT enhances energy efficiency and boosts overall performance.

    Advanced trench field-stop technology provides an additional layer of optimized switching efficiency, adding to its reliability. Rigorously tested to achieve AEC-Q101 qualification, this IGBT is equipped with the robustness required in extreme automotive environments.

    From PTC heaters and solid-state relays and electric drive systems, MCC’s new 1200V IGBT is the obvious solution for engineers looking to improve system integrity and efficiency in diverse applications.

    Features & Benefits:

    • AEC-Q101 Qualified: Meets stringent automotive quality standards for enhanced reliability.
    • 1200V High Breakdown Voltage: Capable of handling high-voltage operations, making it ideal for automotive applications.
    • Low Saturated VCE: Achieves 2.25V (typ.) at higher temperatures, minimizing energy loss and enhancing efficiency.
    • Low Switching Losses: Enable efficient operation, contributing to improved overall system performance.
    • Excellent Thermal Performance: Housed in a super TO-220 package (TO-273AA) with a junction-to-case thermal resistance of 0.17K/W, ensuring effective heat dissipation.
    • High Thermal Stability: Maintains performance across a wide temperature range for unwavering operation in varying scenarios.
    • Powerful Short-Circuit Protection: Integrated features safeguard against damage in fault conditions, enhancing safety and dependability.
    • Versatile Application Compatibility: Suitable for a wide range of automotive applications, including PTC heaters, solid-state relays, electric drive systems, renewable energy systems, and industrial motor drives.

    Original – Micro Commercial Components

    Comments Off on MCC Semi Expands Product Portfolio with 1200V Auto-Grade Trench Field-Stop IGBT
  • Infineon Technologies Expands OptiMOS™ 6 MOSFET Portfolio with New 135 V and 150 V Product Families

    Infineon Technologies Expands OptiMOS™ 6 MOSFET Portfolio with New 135 V and 150 V Product Families

    2 Min Read

    Infineon Technologies AG expands its OptiMOS™ 6 MOSFET portfolio with the new 135 V and 150 V product families. The devices are designed to meet the requirements of drives and switched-mode power supply (SMPS) applications and complement the recently released launched OptiMOS 6 120 V MOSFETs.

    With the extended portfolio, Infineon offers its customers a wide range of alternatives to select the best-fit MOSFETs for various applications. Lower switching losses benefit applications like server SMPS, solar optimizers, high-power USB chargers, and telecom. Improved conduction losses are highly beneficial for motor inverters in e-forklifts and light electric vehicles (LEVs).

    Compared to the previous generation (OptiMOS 5 150 V MOSFETs), the new product families offer a reduction in on-state resistance R DS(on) of up to 50 percent, while the FOM g is reduced by 20%. With the very low R DS(on), their improved switching performance and excellent EMI behavior, both new families deliver unparalleled efficiency, power density, and reliability. A faster and softer body diode delivers an up to 59 percent lower Q rr, less overshoot and ringing.

    The OptiMOS 6 135 V and 150 V MOSFETs are available in a variety of packages to provide customers with a range of options for best-fit products. This broad package portfolio includes TO-220, D 2PAK 3-pin, D 2PAK 7-pin, TOLL, TOLG, TOLT, SuperSO8 5×6 and PQFN 3.3×3.3.

    The OptiMOS 6 135 V and 150 V MOSFETs can be ordered now. Further information is available at www.infineon.com/optimos-6-135v and www.infineon.com/optimos-6-150v.

    Original – Infineon Technologies

    Comments Off on Infineon Technologies Expands OptiMOS™ 6 MOSFET Portfolio with New 135 V and 150 V Product Families
  • ROHM Unveiled New N-channel MOSFETs for Automotive Applications

    ROHM Unveiled New N-channel MOSFETs for Automotive Applications

    2 Min Read

    ROHM has released N-channel MOSFETs – RF9x120BKFRA / RQ3xxx0BxFRA / RD3x0xxBKHRB – featuring low ON-resistance ideal for a variety of automotive applications, including motors for doors and seat positioning, as well as LED headlights. Sales have begun with 10 models across 3 package types, with plans to expand the lineup in the future.

    The automotive sector is seeing a surge in the number of electronic components, driven by the demand for enhanced safety and convenience. At the same time, there is a pressing need for improved power efficiency to optimize fuel and electricity consumption. Especially for MOSFETs essential for switching applications in automotive systems, there is a growing requirement for lower ON resistance to minimize loss and heat generation.

    ROHM, which has been supplying low ON-resistance MOSFETs for consumer and industrial equipment, has now extended this technology to the automotive sector. Adapting cutting-edge medium voltage processes to meet the stringent reliability requirements of automotive products allowed us to develop 10 N-channel MOSFET models characterized by low ON resistance.

    Offered in voltage ratings of 40V, 60V, and 100V, the new products incorporate a split-gate structure to achieve low ON-resistance, contributing to higher efficiency operation in automotive applications. All models are qualified under the AEC-Q101 automotive reliability standard, guaranteeing exceptional high reliability.

    Users can select from among three package types, depending on the application. For space-constrained sets like Advanced Driver Assistance Systems (ADAS), the compact DFN2020Y7LSAA (2.0mm × 2.0mm) and HSMT8AG (3.3mm × 3.3mm) packages are ideal. For automotive power applications, the widely used TO-252 (DPAK) package (6.6mm × 10.0mm) is also available. In addition, ROHM has further enhanced mounting reliability by utilizing wettable flank technology for the DFN2020Y7LSAA package and gull-wing leads for the TO-252 package.

    Going forward, ROHM plans to expand its lineup of medium-voltage N-channel MOSFETs to provide even greater miniaturization and higher efficiency in automotive applications. Mass production of the DFN3333 (3.3mm × 3.3mm) and HPLF5060 (5.0mm × 6.0mm) packages is scheduled for October 2024, followed by 80V products in 2025. P-channel products are also scheduled for future release.

    Original – ROHM

    Comments Off on ROHM Unveiled New N-channel MOSFETs for Automotive Applications
  • Infineon Technologies to Shape Rapidly Growing GaN Market with Groundbreaking GaN 300 mm Technology

    Infineon Technologies to Shape Rapidly Growing GaN Market with Groundbreaking GaN 300 mm Technology

    3 Min Read

    Infineon Technologies AG announced that the company has succeeded in developing the world’s first 300 mm power gallium nitride (GaN) wafer technology. Infineon is the first company in the world to master this groundbreaking technology in an existing and scalable high-volume manufacturing environment. The breakthrough will help substantially drive the market for GaN-based power semiconductors.

    Chip production on 300 mm wafers is technologically more advanced and significantly more efficient compared to 200 mm wafers, since the bigger wafer diameter fits 2.3 times as many chips per wafer.

    GaN-based power semiconductors find fast adoption in industrial, automotive, and consumer, computing & communication applications, including power supplies for AI systems, solar inverters, chargers and adapters, and motor-control systems. State-of-the art GaN manufacturing processes lead to improved device performance resulting in benefits in end customers’ applications as it enables efficiency performance, smaller size, lighter weight, and lower overall cost. Furthermore, 300 mm manufacturing ensures superior customer supply stability through scalability.

    “This remarkable success is the result of our innovative strength and the dedicated work of our global team to demonstrate our position as the innovation leader in GaN and power systems,” said Jochen Hanebeck, CEO of Infineon Technologies AG. “The technological breakthrough will be an industry game-changer and enable us to unlock the full potential of gallium nitride. Nearly one year after the acquisition of GaN Systems, we are demonstrating again that we are determined to be a leader in the fast-growing GaN market. As a leader in power systems, Infineon is mastering all three relevant materials: silicon, silicon carbide and gallium nitride.”

    Infineon has succeeded in manufacturing 300 mm GaN wafers on an integrated pilot line in existing 300 mm silicon production in its power fab in Villach (Austria). The company is leveraging well-established competence in the existing production of 300 mm silicon and 200 mm GaN. Infineon will further scale GaN capacity aligned with market needs. 300 mm GaN manufacturing will put Infineon in a position to shape the growing GaN market which is estimated to reach several billion US-Dollars by the end of the decade.

    This pioneering technological success underlines Infineon’s position as a global semiconductor leader in power systems and IoT. Infineon is implementing 300 mm GaN to strengthen existing and enabling new solutions and application fields with an increasingly cost-effective value proposition and the ability to address the full range of customer systems. Infineon will present the first 300 mm GaN wafers to the public at the electronica trade show in November 2024 in Munich.

    A significant advantage of 300 mm GaN technology is that it can utilize existing 300 mm silicon manufacturing equipment, since gallium nitride and silicon are very similar in manufacturing processes. Infineon’s existing high-volume silicon 300 mm production lines are ideal to pilot reliable GaN technology, allowing accelerated implementation and efficient use of capital. Fully scaled 300 mm GaN production will contribute to GaN cost parity with silicon on R DS(on) level, which means cost parity for comparable Si and GaN products.

    300 mm GaN is another milestone in Infineon’s strategic innovation leadership and supports Infineon’s mission of decarbonization and digitalization.

    Original – Infineon Technologies

    Comments Off on Infineon Technologies to Shape Rapidly Growing GaN Market with Groundbreaking GaN 300 mm Technology
  • Infineon Technologies Development Team Brings the World's First SiC Trench MOSFET in 3300V Voltage Class to Series Production

    Infineon Technologies Development Team Brings the World’s First SiC Trench MOSFET in 3300V Voltage Class to Series Production

    4 Min Read

    Infineon Technologies AG has been nominated for the Deutscher Zukunftspreis 2024, the Federal President’s Award for Technology and Innovation, for its development of a new type of energy-saving chip based on the innovative semiconductor material silicon carbide (SiC). The Jury of Deutscher Zukunftspreis has announced the three nominated teams in Munich.

    A team of developers from Infineon, together with Chemnitz University of Technology, has succeeded in developing the world’s first silicon carbide MOSFET with a vertical channel (trench MOSFET) and innovative copper contacting in the 3300V voltage class. The new SiC modules and the power converters equipped with the modules represent a revolutionary innovation leap in semiconductor technology from conventional silicon to more energy-efficient silicon carbide, which reduces switching losses in high-current applications by 90%.

    MOSFETs are electrical switches for a wide range of applications. Trench MOSFETs differ from so-called planar MOSFETs in their cell structure and performance. While the current flow in planar MOSFETs is initially horizontal, trench MOSFETs offer purely vertical channels. This results in a higher cell density per surface area, which in turn significantly reduces the losses in the chip during energy conversion and therefore increases efficiency.

    “The transition towards green energy and many other pressing challenges of our time can only be solved with technological progress,” said Jochen Hanebeck, CEO of Infineon Technologies AG. “It is therefore important to promote and reward innovation and make it visible in society. The ‘Deutscher Zukunftspreis’ is the most important national award that is presented with this aim in mind. The nomination is a great honor for us and proof of the successful research and development work at Infineon. Congratulations to all colleagues involved!”

    The CoolSiC™ XHP™2 module family enables significant energy savings, for example in industrial power generation in solar parks or wind turbines, in power transmission and, above all, in end consumption, where high energies in the megawatt range are required. A single train with a silicon carbide drive system can save around 300 MWh per year compared to the previous silicon-based solution. This is roughly equivalent to the annual consumption of 100 single-family homes. Together with drive technology manufacturers and rail operators, Infineon is making an important contribution to decarbonization. At the same time, local residents also benefit from the lower noise level of trains with SiC modules when they pass through residential areas.

    Through numerous innovative developments in chip processing and design as well as contacting and module technology, the team led by Dr. Konrad Schraml, Dr. Caspar Leendertz (both Infineon) and Prof. Dr. Thomas Basler (Chemnitz University of Technology) has brought the 3300V CoolSiC XHP2 high-performance module to production readiness. With ten times greater reliability against thermomechanical stress and a significantly higher power density compared to silicon modules, the new silicon carbide module can also be used to electrify large drives in diesel locomotives, agricultural and construction machinery, aircraft and ships, which were previously reserved for fossil fuels. The significantly higher switching frequencies permitted by the new module are helpful, as they enable a significant reduction in weight and volume of the power converters in the application. 

    “This nomination shows that climate change and sustainable resource consumption have become central aspects of our society,” said Dr. Peter Wawer, Division President Green Industrial Power (GIP) at Infineon. “Innovative energy solutions and power semiconductors are a core component in decarbonization and fighting climate change, as the expert jury of Deutscher Zukunftspreis has recognized. I am proud that we at Infineon can make a significant contribution to a green future with pioneering technology.”

    Project manager Dr. Konrad Schraml: “For us as a development team, it is a matter close to our hearts to develop innovative chips that contribute to efficient energy consumption and thus also to green mobility on our planet. This nomination is a great recognition for my team, whose tireless efforts, expertise and passion for sustainability have made the technology breakthrough in silicon carbide possible.”

    On November 27, Federal President Frank-Walter Steinmeier presents the Deutscher Zukunftspreis to the winning team in Berlin.

    Original – Infineon Technologies

    Comments Off on Infineon Technologies Development Team Brings the World’s First SiC Trench MOSFET in 3300V Voltage Class to Series Production