-
MCC Semi rolled out three new 600V MOSFETs that go beyond high performance. Designed with an integrated fast recovery diode, these advanced components help solve the challenges engineers face when trying to maximize efficiency while minimizing power losses and heat generation.
Ideal for high-voltage applications, MSJWFR60N60, MCTK075N60FH, and MCTK105N60FH feature on-resistance in the sub-100mΩ range — with options as low as 30mΩ — to significantly reduce conduction losses and ensure efficient power delivery.
A low gate charge only adds to their excellence, especially in high-frequency applications where response times are critical. Available in a through-hole TO-247 package and space-saving SMD TOLL-8L options with a Kelvin source connection, these MOSFETs offer a versatile solution for enhancing overall system performance.
Improve reliability for various applications, such as power supplies, AC-DC converters, motor drives, and renewable energy systems, with these low RDS(on) semiconductors from MCC.
Features & Benefits:
- Superjunction MOSFET technology: Enhances efficiency and reduces power losses
- Low on-resistance: Minimizes conduction losses for improved performance
- Low conduction losses: Ensures greater efficiency in power applications
- Low gate charge: Facilitates faster switching and reduced energy consumption
- Integrated fast recovery diode: Provides rapid recovery for better switching performance
- High-speed switching: Supports high-frequency operations, perfect for modern applications
- Versatile packages: Enables design flexibility with through-hole (TO-247) and SMD with Kelvin Source (TOLL-8L-KS) options
Original – Micro Commercial Components
-
LATEST NEWS / PRODUCT & TECHNOLOGY / SiC / WBG2 Min Read
Power Master Semiconductor has released a new package portfolio, TO leadless (TOLL) package for 650V eSiC MOSFET series to meet the increasing demands for high power density and efficiency with superior switching performance in various applications such as AI data center servers, telecom infrastructure, flat panel display power, ESS, and battery formations.
Recently, the rapid growth of artificial intelligence (AI) is expected to drive continued strong data center demand. AI datacenters rely on GPUs that consume 10 to 15 times more power than traditional CPUs. SiC MOSFETs in TOLL package are an optimal solution for the rapidly expanding AI applications today.
The TOLL package has a footprint of 9.9mm x 11.7mm, reducing the PCB area by 30% compared to the D2PAK 7-lead package. Moreover, with a thickness of 2.3mm, it has 60% less height than the D2PAK 7-lead package.
The TOLL offers superior thermal performance and low package inductance (2nH) compared to D2PAK 7-lead package. Kelvin source configuration lowers gate noise and reduces turn-on loss by 60% compared to same device without Kelvin source configuration, enabling higher frequency operation and improved power density. The new PCT65N27M1 has a VDSS rating of 650 V with a typical RDS(ON) of 27mΩ and a maximum drain current (ID) of 84 A.
Power Master Semiconductor’s products in TOLL package has special grooves in the gate and source pins to enhance the performance of the solder joint and offers Moisture Sensitivity Level 1 (MSL 1).
Original – Power Master Semiconductor
-
LATEST NEWS / PRODUCT & TECHNOLOGY2 Min Read
Keysight Technologies, Inc. introduces the Electrical Structural Tester (EST), a wire bond inspection solution for semiconductor manufacturing that ensures the integrity and reliability of electronic components.
The semiconductor industry is faced with testing challenges due to the increasing density of chips in mission-critical applications such as medical devices and automotive systems. Current testing methodologies often fall short in detecting wire bond structural defects, which lead to costly latent failures. In addition, traditional testing approaches frequently rely on sampling techniques that do not adequately identify wire bond structural defects.
The EST addresses these testing challenges by using cutting-edge nano Vectorless Test Enhanced Performance (nVTEP) technology to create a capacitive structure between the wire bond and a sensor plate. Using this method the EST can identify subtle defects such as wire sag, near shorts, and stray wires to enable a comprehensive assessment of wire bond integrity.
Key benefits of the EST include:
- Advanced defect detection – Identifies a wide range of wire bond defects, both electrical and non-electrical, by analyzing changes in capacitive coupling patterns to ensure the functionality and reliability of electronic components.
- High-volume manufacturing ready – Enables throughput of up to 72,000 units per hour through the ability to test up to 20 integrated circuits simultaneously, which boosts productivity and efficiency in high-volume production environments.
- Big data analytics integration: Captures defects and enhances yield through advanced methods like marginal retry test (MaRT), dynamic part averaging test (DPAT), and real-time part averaging test (RPAT).
Carol Leh, Vice President, Electronic Industrial Solutions Group Center of Excellence, Keysight, said: “Keysight is dedicated to pioneering innovative solutions that address the most pressing challenges in the wire bonding process. The Electrical Structural Tester empowers chip manufacturers to enhance production efficiency by rapidly identifying wire bond defects, ensuring superior quality and reliability in high-volume manufacturing.”
The Electrical Structural Tester will be showcased at the Keysight booth (K3283) at SEMICON Taiwan 2024, Taipei Nangang Exhibition Center Hall 1, September 4-6, 2024.
Original – Keysight Technologies
-
Toshiba Electronics Europe GmbH has launched a small new intelligent power device (IPD) for space-constrained brushless DC (BLDC) motor drive applications such as air conditioners, air purifiers, and pumps.
The new IPD (TPD4165K) has an increased maximum output current of 3A, compared to the 2A rating of Toshiba’s existing products like TPD4163K, or TPD4164K. This extends the range of supported equipment and allows use in higher power applications. The device is suitable for sine-wave drive.
As power supply voltage may fluctuate significantly in some regions where the IP could be used, the absolute maximum voltage rating (VBB) has been increased to 600V to enhance long-term reliability. This represents a 20% increase over Toshiba’s previous products (TPD4123K, TPD4123AK, TPD4144K, TPD4144AK, TPD4135K, TPD4135AK).
The new TPD4165K is housed in a through-hole HDIP30 package. This has a 21% smaller footprint than the DIP26 package used for many of Toshiba’s previous products, simplifying the design process for challenging space-constrained applications. The new device measures just 32.8mm x 13.5mm x 3.525mm. It supports either three-shunt or single-shunt resistor circuit for current sensing.
Built into the new IPD is a range of safety features including over-current, under-voltage and thermal shutdown. Additionally, an external signal can be applied to the SD pin to control the behaviour of the output stage. The DIAG output pin provides the status of the safety conditions.
Designers can freely access a reference design for a sensorless BLDC motor drive circuit based upon the new TPD4165K and Toshiba’s TMPM374FWUG microcontroller with vector control engine capability. The reference design data can be downloaded from Toshiba’s website.
Toshiba will continue to expand its product range by adding devices with improved characteristics. This will assist designers by improving design flexibility as well as contributing to carbon neutrality through energy-saving motor control.
Original – Toshiba
-
LATEST NEWS / PRODUCT & TECHNOLOGY / Si / SiC / WBG3 Min Read
onsemi released the newest generation silicon and silicon carbide hybrid Power Integrated Modules (PIMs) in an F5BP package, ideally suited to boost the power output of utility-scale solar string inverters or energy storage system (ESS) applications. Compared to previous generations, the modules offer increased power density and higher efficiencies within the same footprint to increase the total system power of a solar inverter from 300kW up to 350kW.
This means a one-gigawatt (GW) capacity utility-scale solar farm using the latest generation modules can achieve an energy savings of nearly two megawatts (MW) per hour or the equivalent of powering more than 700 homes per year. Additionally, fewer modules are required to achieve the same power threshold as the previous generation, which can reduce power device component costs by more than 25%.
With solar power having achieved the lowest levelized cost of energy (LCOE), it is increasingly becoming the go-to source for renewable power generation around the world. To compensate for solar power’s variability, utility operators are also adding large-scale battery energy storage systems (BESS) to ensure a stable energy flow to the grid. To support this combination of systems, manufacturers and utilities require solutions that offer maximum efficiency and reliable power conversion. Every 0.1% of efficiency improvement can equate to a quarter of a million dollars in annual operational savings for every one gigawatt of installed capacity.
“As a variable energy source dependent on sunlight, continual advances in increasing system efficiencies, reliability and advanced storage solutions are needed to be able to maintain the stability and reliability of global grids during peak and off-peak power demand,” said Sravan Vanaparthy, vice president, Industrial Power Division, Power Solutions Group, onsemi. “A more efficient infrastructure increases adoption and assures us that, as more solar power generation is built out, less energy is wasted and pushes us forward on a path away from fossil fuels.”
The F5BP-PIMs are integrated with 1050V FS7 IGBT and the 1200V D3 EliteSiC diode to form a foundation that facilitates high voltage and high current power conversion while reducing power dissipation and increasing reliability. The FS7 IGBTs offer low turn-off losses and reduce switching losses by up to 8%, while the EliteSiC diodes provide superior switching performance and lower voltage flicker by 15% compared to previous generations.
These PIMs employ an innovative I-type Neutral Point Clamp (INPC) for the inverter module and a flying capacitor topology for the boost module. The modules also use an optimized electrical layout and advanced Direct Bonded Copper (DBC) substrates to reduce stray inductance and thermal resistance. In addition, a copper baseplate further decreases thermal resistance to the heat sink by 9.3%, ensuring the module remains cool under high operational loads. This thermal management is crucial in maintaining the efficiency and longevity of the modules, making them highly effective for demanding applications that require reliable and sustained power delivery.
Original – onsemi
-
MCC Semi unveiled a new 950V MOSFET – MCU1K4N95SH. While traditional MOSFETs often include energy losses and slower switching, this new superjunction (SJ) MOSFET features a low gate-to-drain charge, significantly reducing conduction losses and amplifying overall efficiency.
Its superjunction MOSFET technology and on-resistance of only 1.49Ω empower engineers to design for higher voltage ratings without compromising performance. A DPAK (TO-252) package only adds to this MOSFET’s versatility, making it ideal for AC-DC power supplies, LED lighting, charging adapters, solar and energy devices, and other high-voltage applications across multiple industries.
Features & Benefits:
- Superjunction (SJ) MOSFET technology enhances efficiency
- High-voltage rating of 950V is well-suited for demanding applications
- Low gate charge enables faster switching speeds
- High-speed switching capabilities improve overall performance
Original – Micro Commercial Components
-
LATEST NEWS / PRODUCT & TECHNOLOGY / Si2 Min Read
Alpha and Omega Semiconductor Limited (AOS) announced its new highly robust power MOSFET LFPAK 5×6 package. AOS’s new LFPAK product offering is available in a wide range of voltages: 40V, 60V, and 100V, and it is designed to withstand harsh environments while maintaining MOSFET performance. The new devices are found in a broad range of applications such as industrial, server power, telecommunications, and solar, where high reliability is required.
AOS’s LFPAK packaging enables higher board-level reliability due to key packaging features such as gull wing leads, which offer a ruggedized solution for board-level environmental stresses. The gull-wing leads also enable optical inspection during PCBA manufacturing. Another feature enhancement is the LFPAK’s larger copper clip, which improves electrical and thermal performance. Advantages of the large clip include improved current handling capabilities, reduced on-resistance, and better heat dispersion compared to wire bonding. A large clip also has low parasitic inductance, enabling lower spike voltage in switching applications. All these features significantly improve the robustness of the MOSFET, and utilizing AOS’s advanced shielded gate MOSFET Technology (AlphaSGT™) enables designers to find an optimized solution to achieve high reliability under the harshest environmental conditions.
“Designers have long trusted AOS power semiconductors in their applications, and LFPAK 5×6 will expand
solution capability,” said Peter H. Wilson, Marketing Sr. Director of the MOSFET product line at AOS.Original – Alpha and Omega Semiconductor
-
LATEST NEWS / PRODUCT & TECHNOLOGY1 Min Read
In a recent evaluation conducted by a renowned automotive device packaging OEM, MPP’s Heavy Wire Wedge (HWW) for 12-mil wire delivered exceptional results in boosting Mean Time Between Assists (MTBA) and enhancing overall productivity. Previously, the customer had to clean the aluminum buildup from the bonding tool every 20,000 to 30,000 bonds, which disrupted operations and impacted efficiency.
To address this issue, Micro Point Pro (MPP) provided a wedge with a specialized tip coating, tailored to enhance bonding performance. This upgrade allowed the customer to achieve over 700,000 consecutive bonds—an improvement of more than 25 times the previous process—while maintaining high bond quality.
Moreover, the need for frequent cleaning and wedge replacement was eliminated, resulting in substantial reductions in manufacturing resources and a significant boost in productivity. This, in turn, led to overall cost savings.
Key Benefits:
- Drastically increased MTBA (Mean Time Between Assists)
- Significant improvement in productivity
- Lower cost per bond achieved
- Seamless integration with the existing bonding process (“drop-in” replacement)
Original – Micro Point Pro
-
LATEST NEWS / PRODUCT & TECHNOLOGY / SiC / WBG3 Min Read
SemiQ Inc announced the addition of an S7 package to its QSiC™ family of 1200V, half-bridge MOSFET and Schottky diode SiC power modules. The parts further enhance design flexibility for power engineers by providing compact, high-efficiency, high-performance options for new designs while supporting drop-in-replacement in legacy systems that require more efficient operation.
This latest announcement sees the availability of a 529A MOSFET module (GCMX003A120S7B1), a 348A MOSFET module (GCMX005A120S7B1), and two low-noise SiC Schottky diode half-bridge modules (GHXS300A120S7D5 and GHXS400A120S7D5) in an S7 package with industry-standard 62.0mm footprints and a height of just 17.0mm.
The new package addresses the size, weight and power requirements of demanding applications ranging from induction heaters, welding equipment and uninterruptible power supplies (UPS) to photovoltaic and wind inverters, energy storage systems, high-voltage DC-DC converters and battery charging systems for electric vehicles (EVs). As well as the compact form factor of the modules themselves, high-efficiency, low-loss operation helps to reduce system heat dissipation and supports the use of smaller heatsinks.
“Our aim is to provide a comprehensive portfolio of SiC technologies that allow designers to optimize the efficiency, performance and size of today’s demanding applications,” says Dr. Timothy Han, President at SemiQ. “Adding new package option to our 1200V QSiC MOSFET and SiC diode module families further extends the choices available to designers who need to create completely new applications or who are looking to upgrade legacy systems without significant redesign.”
Crafted from high-performance ceramics, SemiQ’s modules achieve exceptional performance levels and support increased power density and more compact designs – especially in high-frequency and high-power environments.
To guarantee a stable gate threshold voltage and premium gate oxide quality for each module, SemiQ conducts gate burn-in testing at the wafer level. In addition to the burn-in test, which contributes to mitigating extrinsic failure rates, various stress tests – including gate stress, high-temperature reverse bias (HTRB) drain stress, and high humidity, high voltage, high temperature (H3TRB) – are employed to attain the necessary automotive and industrial grade quality standards. All parts have undergone testing surpassing 1400V.
Part numbers of SemiQ’s new 1200V modules in S7 packages are shown below.
Part Numbers Circuit Configuration Ratings, Packages RdsOn mΩ GCMX003A120S7B1 S7 Half-bridge 1200V/529A, B1 3.0 GCMX005A120S7B1 S7 Half-bridge 1200V/348A, B1 4.9 GHXS300A120S7D5 S7 Half-bridge 1200V/300A, D5 GHXS400A120S7D5 S7 Half-bridge 1200V/400A, D5 Original – SemiQ
-
LATEST NEWS / PRODUCT & TECHNOLOGY / SiC / WBG1 Min Read
MCC Semi is expanding advanced silicon carbide portfolio with six new 650V SiC MOSFETs. Designed for demanding applications, these components boast high-voltage capability and an on-resistance range of 25 mΩ to 100 mΩ. They’re also equipped with avalanche ruggedness, low switching losses, and enable high-speed switching with a low gate charge.
Their efficiency-boosting design and TO247 package deliver superior thermal performance, while the 3-pin or 4-pin (Kelvin-source pin) options enhance their versatility. These new MOSFETs minimize losses without compromising power handling, making them an intelligent choice for various industrial and telecommunications systems.
Features & Benefits:
- High switching speed with low gate charge
- Low switching losses
- Wide on-resistance selection ranging from 25 mΩ to 100 mΩ
- Avalanche ruggedness for enhanced durability
- TO247 3-pin and 4-pin package options
- Kelvin-source connection for precision (4-pin only)
Original – Micro Commercial Components