• Semikron Danfoss Welcomes Approval of Two IPCEI Projects by the EU Commission

    Semikron Danfoss Welcomes Approval of Two IPCEI Projects by the EU Commission

    2 Min Read

    The European Commission has approved the “Important Project of Common European Interest on Microelectronics and Communication Technologies” (IPCEI-ME/CT) with the aim of initiating complex and investment-intensive projects that could not otherwise be realized. This involves 68 projects from 14 member states – and two of those comes from Semikron Danfoss.

    Semikron Danfoss is planning the further development of diodes based on thin-wafer technology and the development of a new edge structure – as well as the establishment of automotive module production based on Direct Press Die technology in Nuremberg, a continuation of the activities from the IPCEI on Microelectronics project. And in Slovakia, development activities and an expansion of production for industrial modules are planned.

    Projects funded under the IPCEI -ME/CT will enable the development of new technologies and products that will make a decisive contribution to the further reduction of CO2 emissions and will secure growth and jobs in Europe. The Semikron Danfoss projects address the objectives of the European Union to strengthen competitiveness and security of supply in key technologies for both the digital and the green transformation process.

    Power semiconductors are an important multiplier along the value chain of many products. The projects also aim to expand European cooperation with universities and research institutes as well as suppliers. The member states are now starting the implementation process and will determine the requirements of the projects based on the EU decision. Thanks to the prior approval of the early start of the initiatives, the projects have already been launched. The official funding commitment from the federal government and the state of Bavaria is expected shortly for Germany.

    Original – Semikron Danfoss

    Comments Off on Semikron Danfoss Welcomes Approval of Two IPCEI Projects by the EU Commission
  • Power Semiconductors Investment Projects Surpass 70 billion USD

    Power Semiconductors Investment Projects Surpass 70 billion USD

    3 Min Read

    Power semiconductors companies continue to invest heavily in new factories, production capacity expansions, and R&D centers. Thus, recently the total value of the active investment projects launched since 2021 has surpassed 70 billion USD.

    Driven by the pandemic and geopolitics, major power semiconductors companies started to invest more in new factories and joint ventures to have more confidence in their own supply chain in the future.

    As of today, it is obvious to see the major split of power semiconductors into three geographical regions – the USA, Europe, and Asia. Asia may as well be divided into several regions with China being the leading investor of all.

    Despite the ongoing tensions and export restrictions between the US, Europe, and China related to advanced semiconductors, when it comes to power semiconductors European companies continue to invest in the Chinese market expanding their product capacity or establishing new joint ventures like STMicroelectronics and Sanan Optoelectronics did recently.

    Even with some delay, Japanese companies like ROHM, Mitsubishi Electric, Fuji Electric, Renesas Electronics, Toshiba, and others, pushed by their US and European competitors, announced their own projects aimed to secure the capacity on the wafer and device level to correspond to the growing demand for Si and SiC based power semiconductors coming from the electric vehicle and charging, photovoltaics, battery energy storage systems, and the other emerging applications.

    If we take a closer look at all projects announced, SiC is the leading technology with over 60% of total investment. Over 25 market leaders announced their plans to invest in silicon carbide.

    Thus, ROHM is investing in new production to multiply its SiC capacity in the coming years. Mitsubishi Electric teams up with Coherent to scale manufacturing of SiC power devices on a 200 mm SiC technology platform as one of the steps of their 260 billion yen investment project planned till March 2026.

    Infineon Technologies continues to bet on both local European and Asian markets investing in their new fab in Dresden and expanding backend operations in Indonesia. STMicroelectronics continues to invest in WBG semiconductors with the ongoing construction of a new wafer fab in Sicily announced in 2022.

    With a global total number of new investment projects of over 80, the US companies Wolfspeed, onsemi, and Microchip Technology, similar to their European counterparts, invest locally, in Europe and Asian markets. Totally the US semiconductor companies announced new projects valued at almost 9 billion USD.

    With the US and EU Chips Acts, and similar initiatives in China, Japan, South Korea, and some other countries, it is clear that the investment into power semiconductors industry will continue to reach 100 billion USD soon.

    Comments Off on Power Semiconductors Investment Projects Surpass 70 billion USD
  • BorgWarner to Integrate onsemi EliteSiC into VIPER Power Modules

    BorgWarner to Integrate onsemi EliteSiC into VIPER Power Modules

    2 Min Read

    onsemi and BorgWarner Inc. announced the two companies are expanding their strategic collaboration for silicon carbide (SiC), making the total agreement worth over $1 billion in lifetime value. BorgWarner plans to integrate onsemi EliteSiC 1200 V and 750 V power devices into its VIPER power modules. The EliteSiC devices join a broad portfolio of onsemi products that are part of the long-standing strategic relationship between the two companies.

    onsemi provides high-performance EliteSiC technology while maintaining the high standards of quality, reliability and supply assurance needed for the EV traction market. onsemi’s decades of experience in the design, development and manufacturing of power semiconductor products support successful adoption in high-volume automotive applications.

    “First and foremost, onsemi’s continuous and strategic investment in ramping SiC manufacturing capacity across its end-to-end supply chain gives us confidence in our ability to support the increasing demand for our solutions, now and in the future,” said Stefan Demmerle, Vice President of BorgWarner Inc. and President and General Manager, PowerDrive Systems.

    BorgWarner’s silicon carbide traction inverters already offer higher efficiency, better cooling performance, and faster-charging rates in a more compact package than other options for EVs. By using EliteSiC technology, BorgWarner’s solutions expect to benefit from increased power density and higher efficiency, which increase the range and overall performance of EVs.

    “The integration of EliteSiC technology in the traction inverter enables increased gas-equivalent miles per gallon (MPGe), which helps alleviate range anxiety – one of the key barriers to EV adoption,” said Simon Keeton, Executive Vice President and General Manager, Power Solutions Group, onsemi. “With onsemi’s chip-to-system level support and a track record of execution, we are able to provide industry-leading SiC-based solutions to BorgWarner at an accelerated pace to support its go-to-market requirements.”

    Original – onsemi

    Comments Off on BorgWarner to Integrate onsemi EliteSiC into VIPER Power Modules
  • Infineon and Semikron Danfoss Sign Supply Agreement for Electromobility Chip

    Infineon and Semikron Danfoss Sign Supply Agreement for Electromobility Chip

    2 Min Read

    Cars with fully or partially electrified drivetrains will account for two thirds of cars produced by 2028, as per analyst forecasts. This rapid growth of electromobility is driving the demand for power semiconductors. Against this background, Infineon Technologies AG and Semikron Danfoss have signed a multi-year volume agreement for the supply of silicon-based electromobility chips.

    Infineon will supply chipsets consisting of IGBTs and diodes to Semikron Danfoss. These chips are mainly used in power modules for inverters, which are used for the main drive in electric vehicles.

    “As the global leader in automotive semiconductors, Infineon enables game-changing solutions for clean and safe mobility. Already today, our IGBTs and diodes play a major role in the industry’s electromobility transformation by enabling efficient power conversion in the electric powertrain,” said Peter Schiefer, President of Infineon’s Automotive division. “Our broad product portfolio, system expertise and continuous investment in our manufacturing capabilities make us a valued partner of automotive players like Semikron Danfoss.”

    Claus A. Petersen, President of Semikron Danfoss added: “Semikron Danfoss provides automotive customers with power modules based on the most advanced assembly technologies that fully exploit the capabilities of IGBTs and diodes to enable further decarbonization of the transportation sector. Automotive customers trust us as an experienced long-term partner to drive the transformation in the industry.”

    The IGBTs and diodes for Semikron Danfoss will be manufactured by Infineon at its sites in Dresden, Germany, and Kulim, Malaysia. Semikron Danfoss manufactures its own automotive power modules in Nuremberg and Flensburg in Germany, in Utica, US, and as of next year, in Nanjing, China.

    Original – Semikron Danfoss

    Comments Off on Infineon and Semikron Danfoss Sign Supply Agreement for Electromobility Chip
  • ROHM will Acquire New Production Site

    ROHM will Acquire New Production Site

    1 Min Read

    ROHM has reached a basic agreement with Solar Frontier K.K. to acquire the assets of Solar Frontier’s former Kunitomi Plant, located in Japan. The acquisition is scheduled to take place in October 2023 and will belong to the ROHM Group’s main production bases.

    The role of semiconductors, one of ROHM’s core business fields is becoming increasingly important to achieving a decarbonized society.

    In particular, the automotive and industrial equipment markets are undergoing technological innovation such as electrification in order to reduce environmental impact and achieve carbon neutrality. With this, the demand is increasing – especially for power and analog semiconductors.

    As further expansion of the semiconductor market is expected, the ROHM Group intends to expand its production capacity continuously, particularly for silicon carbide (SiC) power devices, and ensure a stable supply to ROHM’s customers.

    Original – ROHM

    Comments Off on ROHM will Acquire New Production Site
  • DISCO's Newly Established Mid-Process Research Center

    DISCO’s Newly Established Mid-Process Research Center

    3 Min Read

    DISCO Corporation opened a new mid-process research center on July 1, 2023.

    As the wafers on which circuits are built in the front-end process of semiconductor manufacturing have extremely high added-value, high yield is required in the processes that follow. Among these processes, in the grinding (wafer thinning) and dicing (wafer singulation through cutting) processes handled by DISCO, there is a risk that one processing failure may cause the entire wafer’s quality to deteriorate.

    Therefore, caution and accuracy are required for operations such as processing and transfer in particular. In addition, if a large number of defects occur in the back-end process, most of the time, alternative wafers cannot immediately be supplied from the front-end process. As a result, this may have a significant impact on the entire supply chain and become a large issue in the lean manufacturing of the automotive industry.

    Recognizing these issues, DISCO has newly positioned these processes that are conventionally in the back-end process of semiconductor manufacturing as part of the “mid-process,” and has been proceeding with R&D in this area.

    DISCO has officially established the mid-process research center as a site to conduct R&D for the mid-process and perform demonstrations for customers. This center has permanent installations of the wafer transfer system RoofWay as well as the cluster system MUSUBI, and research is underway to reduce the equipment operator’s responsibilities and improve semiconductor wafer processing and transfer quality through automation of the production system.

    As semiconductor use in automotive applications is increasing, stricter quality management is being required for semiconductors as well, as they are responsible for the user’s life. Therefore, through this center, DISCO will aim at realizing a production system that eliminates operator intervention as much as possible in order to reduce quality variation that arises from human involvement.

    The mid-process research center is a facility that makes verification of unmmaned processes possible by connecting a series of processes with a fully automatic transfer robot. The processes include thinning using a grinder, singulation using dicing saws and laser saws, and pickup, inspection, and measurement of die.

    The mid-process research center has been partially open since December 2021, and during the time until the official opening, DISCO has been improving the level of the system by incorporating the valuable opinions of some of the invited customers. Now, as some time has passed from when the category of COVID-19 was downgraded and reclassified as a level 5 infectious disease, DISCO felt that it was finally possible to proactively welcome visitors to the center, and thus decided to make an official announcement for the opening of the center.

    Original – DISCO

    Comments Off on DISCO’s Newly Established Mid-Process Research Center
  • Renesas and Wolfspeed Sign 10 Year Silicon Carbide Wafer Supply Agreement

    Renesas and Wolfspeed Sign 10 Year Silicon Carbide Wafer Supply Agreement

    3 Min Read

    Renesas Electronics Corporation and Wolfspeed, Inc. announced the execution of a wafer supply agreement and $2 billion (USD) deposit by Renesas to secure a 10 year supply commitment of silicon carbide bare and epitaxial wafers from Wolfspeed. The supply of high-quality silicon carbide wafers from Wolfspeed will pave the way for Renesas to scale production of silicon carbide power semiconductors starting in 2025. The signing ceremony of the agreement was held at Renesas’ headquarters in Tokyo between Hidetoshi Shibata, President and CEO of Renesas, and Gregg Lowe, President and CEO of Wolfspeed. 

    The decade-long supply agreement calls for Wolfspeed to provide Renesas with 150mm silicon carbide bare and epitaxial wafers scaling in CY2025, reinforcing the companies’ vision for an industry-wide transition from silicon to silicon carbide semiconductor power devices. The agreement also anticipates supplying Renesas with 200mm silicon carbide bare and epitaxial wafers after the recently announced John Palmour Manufacturing Center for Silicon Carbide (the “JP”) is fully operational. 

    The need for more efficient power semiconductors, which supply and manage electricity, is dramatically increasing throughout automotive and industrial applications, spurred by the growth of electric vehicles (EVs) and renewable energy. Renesas is moving quickly to address the growing demand for power semiconductors by expanding its in-house manufacturing capacity. The company recently announced the restart of its Kofu Factory to produce IGBTs, and establishment of a silicon carbide production line at its Takasaki Factory. 

    Compared to conventional silicon power semiconductors, silicon carbide devices enable higher energy efficiency, greater power density and a lower system cost. In an increasingly energy-conscious world, the adoption of silicon carbide is becoming ever more pervasive across multiple high-volume applications spanning EVs, renewable energy and storage, charging infrastructure, industrial power supplies, traction and variable speed drives. 

    “The wafer supply agreement with Wolfspeed will provide Renesas with a stable, long-term supply base of high-quality silicon carbide wafers. This empowers Renesas to scale our power semiconductor offerings to better serve customers’ vast array of applications,” said Hidetoshi Shibata, President and CEO of Renesas. “We are now poised to elevate ourselves as a key player in the accelerating silicon carbide market.” 

    “With the steepening demand for silicon carbide across the automotive, industrial and energy sectors, it’s critically important we have best-in-class power semiconductor customers like Renesas to help lead the global transition from silicon to silicon carbide,” said Gregg Lowe, President and CEO of Wolfspeed. “For more than 35 years, Wolfspeed has focused on producing silicon carbide wafers and high-quality power devices, and this relationship marks an important step in our mission to save the world energy.”  

    The Renesas $2 billion deposit will help support Wolfspeed’s ongoing capacity construction projects including the JP, the world’s largest silicon carbide materials factory in Chatham County, North Carolina. The state-of-the-art, multi-billion-dollar facility is targeted to generate a more than 10-fold increase from Wolfspeed’s current silicon carbide production capacity on its Durham, North Carolina campus. The facility will produce primarily 200mm silicon carbide wafers, which are 1.7x larger than 150mm wafers, translating into more chips per wafer and ultimately, lower device costs.

    Original – Renesas Electronics

    Comments Off on Renesas and Wolfspeed Sign 10 Year Silicon Carbide Wafer Supply Agreement
  • Microchip Launches $300M Multi-Year Investment Initiative to Expand its Presence in India

    Microchip Launches $300M Multi-Year Investment Initiative to Expand its Presence in India

    3 Min Read

    Microchip Technology Incorporated announced a multi-year initiative to invest approximately $300 million in expanding its operations in India, one of the world’s fastest-growing semiconductor industry hubs.

    “Microchip is making a significant strategic commitment to growing our operations in India, whose meteoric growth has established it as one of the top sources of business and technical resources in our sector,” said Ganesh Moorthy, President and CEO of Microchip. “Our investments here will enable us to both benefit from and contribute to the country’s increasingly important role in the global semiconductor industry.”

     Microchip’s planned investments are focused on:

    • Additional improvements to Microchip’s Bangalore and Chennai facilities and the new research and development center in Hyderabad that the company inaugurated in a ceremony today
    • Expanding and enhancing its engineering labs
    • Serving the technical and business support requirements of a large and growing set of customers in India
    • Accelerating hiring as the company taps into India’s growing talent pool
    • Sponsoring technical consortia and supporting academic institutions and programs
    • Launching a variety of Corporate Social Responsibility (CSR) programs tailored to regional needs

    Approximately 2,500 Microchip employees in India are integral to the company’s semiconductor design and development, sales and support, IT infrastructure and application engineering operations. They strengthen corporate initiatives, support 2,000 customers in the region and make valuable contributions across more than 25 business units that develop solutions for industrial, automotive, data center, aerospace and defense, communications and consumer industries.

    “Microchip’s investments in India over nearly two and a half decades have augmented its headcount growth, resulting in building a center of excellence for engineering deliverables and solutions for Microchip’s global success,” said Krishna Moorthy, President and CEO of the India Electronics and Semiconductor Association (IESA). “We look forward to celebrating Microchip’s continued progress in India as it embarks on this impressive growth campaign.”                                               

    IESA and Counterpoint Research recently reported that India’s semiconductor market is expected to reach $64 billion USD by 2026, which is nearly triple its 2019 size of $22.7 billion USD. The Semiconductor Industry Association wrote in its February 2023 India Semiconductor Sector white paper that the country now accounts for 20 percent of the total global design workforce. Together, IESA and SIA announced in January 2023 their plans to jointly build on what India has already accomplished as a major hub for semiconductor research, chip design and equipment engineering, with the goal of unlocking even greater future potential.

    Original – Microchip Technology

    Comments Off on Microchip Launches $300M Multi-Year Investment Initiative to Expand its Presence in India
  • Elmos Sale of Dortmund Wafer Fab to Littelfuse

    Elmos: Sale of Dortmund Wafer Fab to Littelfuse

    3 Min Read

    Elmos Semiconductor SE, one of the world’s leading suppliers of mixed-signal automotive semiconductors, and Littelfuse, Inc., USA, entered into a definitive agreement on the sale of the Elmos wafer fab at the Dortmund site to Littelfuse. Elmos has agreed to sell the wafer fab at a net purchase price of approximately 93 million Euro. Under the agreement, Littelfuse will acquire the Dortmund wafer fab with a highly skilled technology team of approximately 225 employees. All other activities, including testing operations, will remain with Elmos.

    In acquiring the Dortmund wafer fab, Littelfuse enhances its capabilities in power semiconductors for high-growth power conversion applications like renewables, energy storage, and e-Mobility charging infrastructure.

    “Today’s agreement is a milestone for semiconductor production in Dortmund and it will strengthen Germany’s standing as a high-tech location. As a fabless company, Elmos will make even greater use of advanced technologies to deliver groundbreaking innovations in mixed-signal semiconductors. Elmos is already the global market leader for certain applications in the automotive industry. We want to use this strong position to shape our future growth,” says Dr. Arne Schneider, CEO of Elmos Semiconductor SE.

    Headquartered in Chicago, Illinois, United States, Littelfuse, Inc. is a diversified, industrial technology manufacturing company empowering a sustainable, connected and safer world. The company operates across more than 20 countries, and with approximately 18,000 global associates. Its products are found in a variety of industrial, transportation and electronics end markets. In Germany, Littelfuse operates various manufacturing, sales and R&D sites.

    The closing of the transaction is expected to be effective December 31, 2024, and is subject to certain closing conditions and regulatory approvals, among them the investment control procedure under foreign trade law conducted by the German Federal Ministry for Economic Affairs and Climate Action. Elmos will retain full operational control over the wafer fab until the closing date.

    In addition, Elmos and Littelfuse have agreed to enter into a defined multi-year capacity sharing arrangement with an initial term lasting through 2029, with Elmos buying defined volumes of wafers produced at the fab. This long-term agreement supplements the existing supply arrangements with Elmos’ other foundry partners and ensures that Elmos has the necessary capacities to meet projected customer demand.

    “This is good news for the Elmos wafer fab team. We are delighted for Littelfuse to further develop the wafer fab in Dortmund for power semiconductors. Our employees are now expecting a quick review procedure by the relevant authorities,” says Dr. Schneider.

    Following regulatory approvals of the transaction, the buyer will make a payment of approximately 37 million Euro. The remainder of the purchase price will be paid at closing. The transaction has no major effects on EBIT in fiscal year 2023, which is why the current forecast for the full-year EBIT margin in 2023 (25% ± 2 percentage points) continues to apply.

    Cash flow is expected to be positively influenced in fiscal year 2023 by the payment of approximately 37 million Euro after regulatory approvals. Irrespective of the transaction, Elmos continues to increase its efforts to expand testing capacities for future growth. The company now anticipates capital expenditures of approximately 19% ± 2 percentage points of sales in fiscal year 2023 (previously: 17% ± 2 percentage points). As a result, Elmos now expects a negative operating adjusted free cash flow in 2023.

    Original – Elmos Semiconductor

    Comments Off on Elmos: Sale of Dortmund Wafer Fab to Littelfuse
  • “JOINT2” Consortium Enhances Its Proposal Capability for the Development of Next-Generation Semiconductor Packaging Technologies

    “JOINT2” Consortium Enhances Its Proposal Capability for the Development of Next-Generation Semiconductor Packaging Technologies

    3 Min Read

    ORC Manufacturing Co., Ltd. and Resonac Corporation announced that ORC Manufacturing has taken part in the “JOINT2 (Jisso Open Innovation Network of Tops 2)” consortium, which was established under the leadership of Resonac with the aim of developing next-generation semiconductor packaging technologies. As a result, JOINT2 has become a consortium comprised of 13 leading companies in Japan who manufacture semiconductor packaging materials, substrates, and equipment. 

    As a consortium which has end-to-end testing line of leading-edge technologies covering back-end processes of semiconductor package manufacturing, JOINT2 will accelerate development of technologies for evaluation and manufacturing of next-generation semiconductor packages.

    JOINT2 was established in 2021 as a consortium of 12 companies with the aim of establishing next generation semiconductor packaging technologies and evaluation technologies, including 2.5D and 3D packaging through collaboration among member companies. JOINT2 is the successor of “JOINT” consortium, which was established in 2018. 

    The combination of the member companies’ materials and equipment allows materials and equipment to be evaluated under conditions similar to the semiconductor evaluation tests conducted by customers.  This arrangement helps customers save the time and trouble of carrying out individual evaluations for their suppliers and thereby respond to the need of speedy development of semiconductor packages.

    Technologies for “back-end processes” of semiconductor-integrated-circuit manufacturing, where semiconductor chips are packaged, are now required to evolve into next-generation technologies that can support 5G and post-5G high-speed data communication systems. Back-end processes consist of many processes, and consume various materials.

    Therefore, back-end processes have many technical issues to be solved, and solutions for these issues require collaboration among many companies. Therefore, Japanese manufacturers have large shares in the field of back-end processes of semiconductor package manufacturing because they are good at comparing and adjusting technologies.

    ORC Manufacturing is an equipment manufacturer which has forte in optical technologies, and its key product is direct imaging (Dl) system for production of high-density semiconductor packaging substrates. ORC Manufacturing is now developing next-generation Dl system for back-end processes of semiconductor packaging as a part of the project adopted by the New Energy and Industrial Technology Development Organization (NEDO).

    ORC Manufacturing’s participation in JOINT2 reinforces the consortium’s end-to-end testing line of leading-edge back-end process technologies. ORC Manufacturing’s Dl system, which does not require photo-mask preparation, is expected to shorten time-to-market of semiconductor packages, and accelerate technological innovations in back-end processes of semiconductor packaging.

    Through its participation in JOINT2, ORC Manufacturing aims to acquire wide-ranging knowledge about back-end processes of semiconductor packaging including process evaluation technologies applicable to pre-imaging through post-imaging, thereby strengthen its capability to offer values to customers.

    JOINT2 welcomes the new member, and will further promote open innovation and accelerate the development of more sophisticated evaluation technologies, materials, substrates, and equipment applicable to next-generation semiconductor packaging technologies.

    Original – Resonac

    Comments Off on “JOINT2” Consortium Enhances Its Proposal Capability for the Development of Next-Generation Semiconductor Packaging Technologies