• Mitsubishi Electric to Ship Samples of HV100 Dual-type X-Series HVIGBT Modules

    Mitsubishi Electric to Ship Samples of HV100 Dual-type X-Series HVIGBT Modules

    1 Min Read

    Mitsubishi Electric Corporation announced that it will begin shipping samples of a new HV100 dual-type X-Series high-voltage insulated gate bipolar transistor (HVIGBT) module on May31, offering superior power, efficiency and reliability in inverter systems for large industrial equipment such as railways and electric power systems. The dual-type module, which achieves 4.5kV withstand voltage and 10.2kVrms dielectric strength, is rated at 450A, which is believed to be unmatched among 4.5kV silicon HVIGBT modules.

    Power semiconductors are increasingly being utilized to efficiently convert electric power in order to lower the carbon footprint of global society, particularly in heavy industry, where these devices are used in power-conversion equipment such as inverters in railway traction systems and for DC power transmission. In response to the growing demand for devices offering high output, high efficiency and wide-ranging output capacity, Mitsubishi Electric released two versions (3.3kV/450A and 3.3kV/600A) of its HV100 dual-type X-Series high-dielectric-strength HVIGBT module in 2021. In the near future, the forthcoming HV100 dual-type X-Series module will contribute to even higher output, higher efficiency and improved system reliability for inverters used in large industrial equipment requiring high dielectric strength.

    Original – Mitsubishi Electric

    Comments Off on Mitsubishi Electric to Ship Samples of HV100 Dual-type X-Series HVIGBT Modules
  • Partnership for True Multiple Sourcing Semikron Danfoss Power Modules with ROHM IGBTs

    Partnership for True Multiple Sourcing: Semikron Danfoss Power Modules with ROHM IGBTs

    3 Min Read

    Semikron Danfoss and the Kyoto-based company ROHM Semiconductor have been collaborating for more than ten years with regards to the implementation of silicon carbide (SiC) inside power modules. Recently, Semikron Danfoss added ROHM’s new 1200V RGA IGBT to its low power module offering. In doing so, both companies show that they remain committed to serving worldwide motor drive customers’ needs.

    The worldwide growth in electrification technologies has created unprecedented demand for power modules. Often, it is the chip supply that limits power module availability. Despite ongoing investments in production capacity by the chip manufacturers, the supply situation remains tight. It is against this backdrop that ROHM has introduced the new 1200V RGA IGBT, targeted as an alternative to the latest Generation 7 IGBT devices in industrial applications. ROHM is now expanding their bare die offering to Semikron Danfoss, positioning themselves as an advanced alternative to traditional chip suppliers.

    “The RGA is a newly designed, light punch through, trench gate IGBT with Tj,max = 175°C. The conduction, switching, and thermal characteristics are optimized for new industrial drive applications in the low to medium power range. At the same time, the RGA is intended to remain compatible with existing IGBT solutions, enabling a multiple source approach. In addition, the RGA can also be used to improve transient overcurrent handling during overload conditions in motor drive applications,” says Kazuhide Ino, Member of the Board, Managing Executive Officer, CFO at ROHM.

    Semikron Danfoss can offer the 1200V RGA IGBT in a full range of nominal current classes from 10A to 150A. This range, combined with the suitability of the RGA chip in motor drive applications, means that the MiniSKiiP family is the ideal choice for module implementation. The baseplate-less, spring-contact MiniSKiiP is already deeply embedded in the worldwide motor drive market and always equipped with the latest generation IGBTs. Therefore, it is important for this product to have an alternative IGBT source to diversify the supply chain. The uniform-height MiniSKiiP housing family is also offered on the market as a multiple source package, making an alternative IGBT a valuable option for manufacturers.

    For press-fit/solder applications, the industry-standard SEMITOP E package will also be available in pin-compatible configurations to existing Generation 7 IGBT module offerings. This housing family will also offer sixpack (“GD”) and converter-inverter-brake (“DGDL”) circuit configurations.

    “The power electronics industry continues to recover and learn lessons from the supply issues in recent years. It’s clear that diversification in semiconductor chip and module manufacturing is required to generate true ‘multiple source’ power modules”, says Claus A. Petersen, President, Semikron Danfoss. “In the case of 1200V Generation 7 IGBTs, a reliable equivalent from a reputable manufacturer is now available to address this issue also in the low power range. The 1200V RGA IGBT from ROHM is a perfect alternative to the Generation 7 IGBT and can be made to behave in a remarkably similar manner with small gate resistor adjustment,” continues Peter Sontheimer, Senior Vice President Industry Division & Managing Director at Semikron Danfoss.

    Original – Semikron Danfoss

    Comments Off on Partnership for True Multiple Sourcing: Semikron Danfoss Power Modules with ROHM IGBTs
  • CIL’s Advanced Semiconductor Packaging Facility Update

    CIL’s Advanced Semiconductor Packaging Facility Update

    4 Min Read

    It’s been 6 months since CIL announced it’s newly created and UK based advanced semiconductor packaging facility. Contained within the 46,000sq ft facility is a 15,000sq ft ISO7 (Class 10,000) fully qualified cleanroom that is starting to come online and will be ready by late May 2023.

    Since last announced, CIL has also taken the decision to segregate part of this cleanroom to add a separate wafer dicing area complete with DISCO DAD3361 dicing saw and all of the necessary ancillary equipment. This equipment is already installed, commissioned and currently running early engineering trials. This wafer dicing equipment and all of CIL’s current micro-electronics and power semiconductor device packaging equipment will then start to transfer out of CIL’s existing facilities in Andover UK from late May 2023 onwards. The equipment and facilities to be transferred are initially the following:

    • 1 off DISCO DAD3361 die and device wafer saw system complete with wafer mounting equipment.
    • 2 off DATACON 2200EVO Automatic die bonders for power die placement using both SiC & GaN
    • 2 off Automatic die bonders
    • 2 off manual die bonders
    • 5 off ASM 589 Automatic Al wedge bonders
    • 2 off ASM EAGLE60 Automatic Au Ball bonders
    • 1 off K&S Asterion Heavy Gauge Wedge wire bonder
    • 1 off DAGE 4000 die shear/wire bond pull tester
    • 1 off DAGE PROSPECTOR die shear/wire bond pull and full diagnostic test system
    • 2 off Nordson Asymtek S2-920 Auto dispense systems for auto partial glob top
    • 1 off DAGE Quadra7 X-Ray/CT Scan system.
    • 1 off Nordson GEN7 Scanning Acoustic Microscope (CSAM)
    • 1 off Keyence VHX7000 Digital Microscope with sub-micron laser measurement
    • 1 off Boschman Sinterstar Innovate F-XL sinter press for high pressure silver sintering
    • 1 off Boschman Pre-heat and cooling tower system for high pressure silver sintering
    • 1 off Boschman UNISTAR Auto plastic overmold machine. Capable of BGA’s, LGA’s, QFN’s, Plastic IC’s, Power discrete and Power modules
    • 1 off Scheugenpflug VDS U1000 / LP804 VDU Auto epoxy fill system
    • 1 off high power 2000W laser welding system for copper busbar welding
    • 6 off 3D Printers
    • 50 staff of which 30 are engineers

    CIL believes this facility, process equipment and staff will create the largest semiconductor packaging facility in the UK. It is to support and grow its existing micro-electronics customers and to commercially exploit its WBG power semiconductor capability that has been generated from various “Net Zero” low carbon projects funded by APC / InnovateUK / DCMS / BEIS using the latest SiC and GaN devices as well as commercially funded projects.

    By adding the wafer dicing capability to the facility, CIL will be able to process finished wafers to provide Dicing, Die attach, Wire bonding or power device copper clip attach, glob top, full plastic overmold or potting and back these processes up with inspection equipment that includes, X-Ray, CT-Scan, CSAM, VHX7000, and destructive and non-destructive testing using DAGE 4000 and DAGE PROSPECTOR test stations.

    Over the last 3-4 years CIL has grown its engineering department from 8 persons to the 32 persons it has currently and also has a further 10 engineering vacancies. Starting in late May 2023, all of the staff involved in CIL’s semiconductor and power packaging activities will move from CIL’s two existing facilities into this new world class and state of the art semiconductor packaging facility. As with the cleanroom, the offices are nearing completion and will initially house around 30 semiconductor packaging engineers of all levels.

    To compliment this semiconductor packaging facility, CIL has also upgraded its existing SMT PCBA equipment consisting of 5 SMT lines and associated 3D AOI, Flying probe test and IPC2 / 3 soldering at its CIL House facility also in Andover UK. This facility totalling 24,000sq ft is being steadily upgraded and added to.

    In the last 2 years, CIL has seen its turnover increase from £15M to £27M and headcount increase from 135 persons to 187 persons it has today. Over the next 12 months, as well as bringing on line its advanced semiconductor packaging facility, it will also be adding new processes and equipment to its current PCBA service offering to further support both its customers development and production needs. So with the new packaging facility this will give CIL a total of 80,000sq ft of production space at its three Andover UK sites.

    Original – CIL

    Comments Off on CIL’s Advanced Semiconductor Packaging Facility Update
  • Toshiba Releases 150V N-channel Power MOSFET to Increase the Efficiency of Power Supplies

    Toshiba Releases 150V N-channel Power MOSFET to Increase the Efficiency of Power Supplies

    2 Min Read

    Toshiba Electronic Devices & Storage Corporation has launched a 150V N-channel power MOSFET “TPH9R00CQ5,” which uses the latest generation U-MOSX-H process, for switching power supplies of industrial equipment, such as that used in data centers and communications base stations.

    TPH9R00CQ5 features an industry-leading low drain-source On-resistance of 9.0mΩ (max), approximately a 42% reduction from Toshiba’s existing product, “TPH1500CNH1.” Compared with Toshiba’s existing product “TPH9R00CQH,” the reverse recovery charge is reduced by about 74% and the reverse recovery time by about 44%, both key reverse recovery characteristics for synchronous rectification applications. Used in synchronous rectification applications, the new product reduces the power loss of switching power supplies and helps improve efficiency. Furthermore, compared to TPH9R00CQH, the new product reduces spike voltage generated during switching, helping lower the EMI of power supplies.

    The product uses the popular, surface-mount-type SOP Advance(N) package.

    Toshiba also offers tools that support circuit design for switching power supplies. Alongside the G0 SPICE model, which verifies circuit function in a short time, highly accurate G2 SPICE models, which accurately reproduce transient characteristics, are now available.

    Toshiba has also developed “1 kW Non-Isolated Buck-Boost DC-DC Converter for Telecommunications Equipment” and “Three-phase Multi Level Inverter using MOSFET” reference designs that utilize the new product. They are available on Toshiba’s website from today. The new product can also be utilized for the already published “1 kW Full-Bridge DC-DC Converter” reference design.

    Toshiba will continue to expand its lineup of power MOSFETs that reduce power loss, increase the efficiency of power supplies, and help to improve equipment efficiency.

    Applications:

    • Power supplies of industrial equipment, such as that used in data centers and communications base stations.
    • Switching power supplies (high efficiency DC-DC converters, etc.)

    Features:

    • Industry-leading low On-resistance: RDS(ON)=9.0mΩ (max) (VGS=10V)
    • Industry-leading low reverse recovery charge: Qrr=34nC (typ.) (-dIDR/dt=100A/μs)
    • Industry-leading fast reverse recovery time: trr=40ns (typ.) (-dIDR/dt=100A/μs)
    • High channel temperature rating: Tch (max)=175°C

    Original – Toshiba

    Comments Off on Toshiba Releases 150V N-channel Power MOSFET to Increase the Efficiency of Power Supplies