-
LATEST NEWS / Si / SiC / WBG2 Min Read
VMAX, a leading Chinese manufacturer of power electronics and motor drives for new energy vehicles, has selected the new CoolSiC™ hybrid discrete with TRENCHSTOP™ 5 Fast-Switching IGBT and CoolSiC Schottky Diode from Infineon Technologies AG for its next generation 6.6 kW OBC/DCDC on-board chargers.
Infineon’s components come in a D²PAK package and combine ultra-fast TRENCHSTOP 5 IGBTs with half-rated free-wheeling SiC Schottky barrier diodes to achieve a perfect cost-performance ratio for both hard and soft switching topologies. With their superior performance, optimized power density and leading quality, the power devices are ideally suited for VMAX’s on-board chargers.
“We are proud to choose Infineon’s CoolSiC Hybrid device in our next-generation OBC, achieving higher reliability, stability, improved performance, and power density. This deepens our already strong partnership with Infineon and drives technological application innovation through close collaboration, working together to promote the thriving development of new energy vehicles,” said Jinzhu Xu, PL Director& Chief Engineer, R&D Department at VMAX.
“We are excited to strengthen our partnership with VMAX with our highly efficient hybrid products,” said Robert Hermann, Vice President for Automotive High Voltage Chips and Discretes at Infineon. “Together, we will continue to drive e-mobility advancements, providing efficient solutions that meet the requirements of the industry in terms of performance, quality and system cost.”
With its fast, hard switching TRENCHSTOP 5 650 V IGBT co-packed with zero reverse recovery CoolSiC Schottky diode, the hybrid discrete benefits from very low switching losses at switching speeds above 50 kHz. This makes the device an excellent option for high-power electric vehicle charging systems.
In addition, the robust 5 th generation CoolSiC Schottky diode offers increased robustness against surge currents, maximizing reliability. Furthermore, the diffusion soldering of the SiC diode has improved the thermal resistance (R th) to the package for small chip sizes, resulting in increased power switching capability.
With these features, it enables optimum system reliability and longevity, meeting the stringent requirements of the automotive industry. To further maximize compatibility with existing designs, the product also features a pin-to-pin compatible design based on the widely used D²PAK package.
Original – Infineon Technologies
-
LATEST NEWS / Si / SiC / WBG1 Min Read
BYD honored United Nova Technology (formerly known as Semiconductor Manufacturing Electronics (ShaoXing) Corporation) with “Special Contribution Award” on BYD NEV (New Energy Vehicle) Core Supplier Convention 2023 for being a highly reliable partner in terms of quality and delivery capability.
Since 2021, UNT has engaged in broad cooperation with BYD in multi domains, including power devices such as SiC MOSFET, IGBT, and silicon-based MOSFET, as well as power modules and analog IC for automotive industry.
With the deepening of cooperation, UNT’s products have entered BYD’s ocean series and dynasty series on a large scale. In 2023, the SiC MOSFET manufactured by UNT have been widely installed in BYD’s electric vehicles. Being awarded the “Special Contribution Award” is a full recognition of the continuous contribution and outstanding performance of UNT.
In the future, UNT will continue to deepen its close cooperation with global customers such as BYD, promote technology innovations, and provide customers with more efficient and low-energy consumption solutions to support the vigorous development of the green energy.
Original – United Nova Technology
-
LATEST NEWS / PRODUCT & TECHNOLOGY / Si3 Min Read
Alpha and Omega Semiconductor Limited announced the release of two αMOS5™ 600V FRD Super Junction MOSFETs. αMOS5™ is AOS’s market and application-proven high voltage MOSFET platform, designed to meet the high efficiency and high-density needs of servers, workstations, telecom rectifiers, solar Inverters, EV charging, motor drives and industrial power applications.
The design of today’s mid-high power switched-mode power supply (SMPS) and solar inverter systems boil down to four major challenges – higher efficiency, higher density, lower system costs, and uncompromised robustness. High Voltage Super Junction MOSFETs are dominant the choice for topologies such as single/interleaved/dual boost/CrCM TP PFCs, LLC, PSFB, multi-level NPC/ANPC and so forth.
αMOS5™ has been the leading High Voltage Super Junction solution tailored for fast switching, ease-of use and robustness in mission-critical applications. αMOS5™ FRD FETs are engineered with strong intrinsic body diode to handle hard commutation scenarios, when the freewheeling body diode is in reverse recovery due to abnormal operations, such as short-circuit or start-up transients.
The two products released, the AOK095A60FD (TO-247) and AOTF125A60FDL (TO-220F), are 600V FRD FETs with 95mohm and 125mohm maximum Rdson, respectively. In tests conducted by AOS engineers, the body diodes of these two FRD FETs have survived high di/dt, under abnormal system conditions, even at elevated junction temperatures of up to 150°C. Additionally, AOS tests have shown that these devices’ turn off energy (Eoff) are noticeably lower than the competition’s, which contributes to higher efficiency in light or mid-load conditions.
“We defined our products for traditional power supplies, as well as DC/DC and DC/AC converters of solar inverters and ESS systems, where bi-directional topologies are needed. As energy storage-ready inverters become the trend and high voltage batteries are utilized increasingly in AC-coupled systems, the AOK095A60FD and AOTF125A60FDL will become industry leading solutions for bi-directional DC/DC and inverter/PFC applications that serve a wide range of power supplies, solar PV inverters, and ESS hybrid converters,” said Richard Zhang, Senior Director of Product Line and Global Power Supply Business at AOS.
Technical Highlights
- Rugged, fast recovery diode (FRD) with reduced Qrr for demanding use cases
- Engineered for both hard and soft switching topologies with ultra-low switching loss
- Strong UIS and SOA capabilities
- Engineered to prevent self turn-on
- Suitable for LLC, PSFB, CrCM Totem-Pole, Multi-level NPC and CrCM H-4/Cyclo Inverter applications
Original – Alpha and Omega Semiconductor