• Infineon Technologies and Stellantis to Develop Next Generation of Power Architecture

    Infineon Technologies and Stellantis to Develop Next Generation of Power Architecture

    2 Min Read

    Stellantis N.V. and Infineon Technologies AG will work jointly on the power architecture for Stellantis’ electric vehicles to support Stellantis’ ambition of offering clean, safe and affordable mobility to all. 

    To support this, the companies have signed major supply and capacity agreements that will serve as the foundation for the planned collaboration to develop the next generation of power architecture, including: 

    • Infineon’s PROFET™ smart power switches, which will replace traditional fuses, reduce wiring and enable Stellantis to become one of the first automakers to implement intelligent power network management.
    • Silicon carbide (SiC) semiconductors, which will support Stellantis in its efforts to standardize its power modules, improve the performance and efficiency of EVs while also reducing costs.
    • AURIX TM microcontrollers, which target the first generation of the STLA Brain zonal architecture.

    Stellantis and Infineon are also in the process of extending their cooperation with the implementation of a Joint Power Lab to define the next-generation scalable and intelligent power architecture enabling Stellantis’ software-defined vehicle.

    “As outlined in our strategic planDare Forward 2030, we are securing the supply of crucial semiconductor solutions required to continue our transition to an electrified future leveraging innovative E/E architectures for our next-generation platforms,” said Maxime Picat, Stellantis Chief Purchasing and Supplier Quality Officer.

    “Infineon is now entering a collaboration and innovation partnership with Stellantis,” said Peter Schiefer, President of Infineon’s Automotive Division. “As the world’s leading automotive semiconductor vendor, we bring our product-to-system expertise and dependable electronics to the table. Our semiconductors drive the decarbonization and digitalization of mobility. They increase the efficiency of cars and enable software-defined architectures that will significantly improve the user experience.” 

    With the world`s most cost-competitive SiC fab in Kulim, Malaysia, the upcoming 300-millimeter ”Smart Power Fab” in Dresden, Germany, and the joint venture with TSMC and partners (ESMC) as well as accompanying supply agreements with foundry partners, Infineon is ready to fully meet market demand for automotive semiconductor solutions. According to the market research company TechInsights, Infineon is the global number one supplier of automotive microcontrollers with a market share of about 29 percent of the global automotive microcontroller market.

    Original – Infineon Technologies

    Comments Off on Infineon Technologies and Stellantis to Develop Next Generation of Power Architecture
  • STMicroelectronics Released an Advanced Galvanically Isolated Gate Drivers for IGBTs and SiC MOSFETs

    STMicroelectronics Released an Advanced Galvanically Isolated Gate Drivers for IGBTs and SiC MOSFETs

    2 Min Read

    STMicroelectronics’ STGAP3S family of gate drivers for silicon-carbide (SiC) and IGBT power switches combines ST’s latest robust galvanic isolation technology with optimized desaturation protection and flexible Miller-clamp architecture.

    Featuring reinforced capacitive galvanic isolation between the gate-driving channel and the low-voltage control and interface circuitry, the STGAP3S withstands 9.6kV transient isolation voltage (VIOTM) with 200V/ns common-mode transient immunity (CMTI). With its state-of-the-art isolation, the STGAP3S enhances reliability in motor drives for industrial applications such as air conditioning, factory automation, and home appliances. The new drivers are also used in power and energy applications including charging stations, energy storage systems, power-factor correction (PFC), DC/DC converters, and solar inverters.

    The STGAP3S product family includes different options with 10A and 6A current capability, each of them available with differentiated Under Voltage Lock-Out (UVLO) and desaturation intervention thresholds. This helps designers select the best device to match the performance of their chosen SiC MOSFET or IGBT power switches.

    The Desaturation protection implements an overload and short-circuit protection for the external power switch providing the possibility to adjust the turn-off strategy using an external resistor to maximize the protection turn-off speed while avoiding excessive overvoltage spikes. The undervoltage-lockout protection prevents turn-on with insufficient drive voltage.

    The driver’s integrated Miller Clamp architecture provides a pre-driver for an external N-channel MOSFET. Designers can thus leverage flexibility to select a suitable intervention speed that prevents induced turn-on and avoids cross conduction.

    The available device variants allow a choice of 10A sink/source and 6A sink/source drive-current capability for optimum performance with the chosen power switch with desaturation-detection and UVLO thresholds optimized for IGBT or SiC technology. The fault conditions of desaturation, UVLO and overtemperature protection are notified with two dedicated open drain diagnostic pins.

    Original – STMicroelectronics

    Comments Off on STMicroelectronics Released an Advanced Galvanically Isolated Gate Drivers for IGBTs and SiC MOSFETs
  • Navitas Semiconductor Announced World’s First 8.5 kW Power Supply Unit Powered by GaN and SiC

    Navitas Semiconductor Announced World’s First 8.5 kW Power Supply Unit Powered by GaN and SiC

    3 Min Read

    Navitas Semiconductor has announced the world’s first 8.5 kW power supply unit (PSU), powered by GaN and SiC technologies to achieve 98% efficiency, for next-generation AI and hyperscale data centers.

    The AI-optimized 54V output PSU complies with Open Compute Project (OCP) and Open Rack v3 (ORv3) specifications and utilizes high-power GaNSafe and Gen-3 Fast SiC MOSFETs configured in 3-phase interleaved PFC and LLC topologies, to ensure the highest efficiency and performance, with lowest component count. The PSU’s shift to a 3-phase topology for both the PFC and LLC (vs. 2-phase topologies used by competing PSUs) enables the industry’s lowest ripple current and EMI.

    Furthermore, the PSU reduces the number of GaN and SiC devices by 25% compared with the nearest competing system, which reduces the overall cost. The PSU has an input voltage range of 180 to 264 Vac, a standby output voltage of 12 V, and an operating temperature range of -5oC to 45oC. Its hold-up time at 8.5 kW is 10 ms, with 20 ms possible through an extender.

    The 3-Phase LLC topology is enabled by high-power GaNSafe, which is specifically created for demanding, high-power applications, such as AI data centers and industrial markets. Navitas’ 4th generation integrates control, drive, sensing, and critical protection features that enable unprecedented reliability and robustness. GaNSafe is the world’s safest GaN with short-circuit protection (350ns max latency), 2kV ESD protection on all pins, elimination of negative gate drive, and programmable slew rate control. All these features are controlled with 4-pins, allowing the package to be treated like a discrete GaN FET, requiring no VCC pin. Suitable for applications from 1 kW to 22 kW, 650 V GaNSafe in TOLL and TOLT packages are available with a range of RDS(ON)MAX from 25 to 98 mΩ.

    The 3-Phase interleaved CCM TP-PFC is powered by Gen-3 Fast SiC MOSFETs with ‘trench-assisted planar’ technology, which has been enabled by over 20 years of SiC innovation leadership and offers world-leading performance over temperature, delivering cool-running, fast-switching, and superior robustness to support faster charging EVs and up to 3x more powerful AI data centers.

    “This complete wide bandgap solution of GaN and SiC enables the continuation of Navitas’ AI power roadmap which enables this 8.5kW and plans to drive to 12kW & higher in the near-term”, said Gene Sheridan, CEO and co-founder of Navitas. “As many as 95% of the world’s data centers cannot support the power demands of servers running NVIDIA’s latest Blackwell GPUs, highlighting a readiness gap in the ecosystem. This PSU design directly addresses these challenges for AI and hyperscale data centers.”

    The PSU will be on display for the first time at Electronica 2024 (Hall C 3, booth 129, November 12th– 15th).

    Original – Navitas Semiconductor

    Comments Off on Navitas Semiconductor Announced World’s First 8.5 kW Power Supply Unit Powered by GaN and SiC
  • SemiQ to Show Latest SiC Power Solutions at electronica 2024

    SemiQ to Show Latest SiC Power Solutions at electronica 2024

    2 Min Read

    SemiQ will exhibit its latest SiC power solutions for high-voltage applications at electronica 2024, the world’s leading electronics trade fair and conference, in Munich from November 12-15.

    Visitors to SemiQ will be able to explore the company’s latest advancements in high-voltage technology. This includes the debut of the next generation of 1200V SiC MOSFETs and SemiQ’s QSiC portfolio of ultra-efficient modules, supporting innovations in EVs, renewable energy, motor drives, medical power supplies and high-power solar applications.

    Engineered with high-performance ceramics, QSiC™ MOSFET modules offer industry-leading reliability in a compact form factor and have been designed to specifically meet the stringent demands for high-power, high-frequency applications. Each module undergoes wafer-level gate burn-in testing to ensure high-quality gate oxide and stable gate threshold voltage.

    Dr. Timothy Han, President of SemiQ said: “Our solutions significantly enhance the performance and efficiencies necessary to propel the industry forward, unlocking yet more high-power applications. We look forward to demonstrating how these innovative technologies will pave the way for fresh designs and advancements in the industry.”

    Electronica will take place at the Messe München in Munich, Germany, from November 12-15, 2024. SemiQ’s stand is at Alfatec’s booth in Hall A5, Booth 421.

    Original – SemiQ

    Comments Off on SemiQ to Show Latest SiC Power Solutions at electronica 2024
  • Nexperia and KOSTAL Partner to Develop Topside Cooled SiC MOSFETs

    Nexperia and KOSTAL Partner to Develop Topside Cooled SiC MOSFETs

    3 Min Read

    Nexperia announced that it has entered into a strategic partnership with KOSTAL, a leading automotive supplier, which will enable it to produce wide bandgap (WBG) devices that more closely match the exacting requirements of automotive applications. Under the terms of this partnership, Nexperia will supply, develop, and manufacture WBG power electronics devices which will be designed-in and validated by Kostal. The collaboration will initially focus on the development of SiC MOSFETs in topside cooled (TSC) QDPAK packaging for onboard chargers (OBC) in electric vehicles (EV).

    KOSTAL Automobil Elektrik, with over a century of experience, is a key player in the global automotive industry. Nearly one in every two cars worldwide is equipped with KOSTAL’s products, including more than 4.5 million onboard chargers, contributing to advancements in electromobility. Ranked among the top 100 automotive suppliers globally, KOSTAL is recognized for its innovative, reliable, and cost-optimized solutions. Its long-standing partnerships with customers and employees reflect the company’s commitment to quality and collaboration.

    “Nexperia has been a trusted supplier of silicon components to KOSTAL for many years and is delighted to enter into this strategic partnership that will now extend to wide bandgap devices”, according to Katrin Feurle, Senior Director and Head of SiC Discretes & Modules. “KOSTAL will assist in validating our devices in its charging applications, thereby providing us with the type of invaluable ‘real-world’ data that will allow us to further enhance their performance”.

    “KOSTAL is extending its’ strategic SiC supply portfolio to support our growth path towards 2030 with a special dedication on E-Mobility applications for onroad and offroad applications” states Dr. Georg Mohr, Executive VP Purchasing & Supply Chain of the KOSTAL Group. “Under this strategic partnership, which reinforces our long- standing customer-supplier relationship, KOSTAL will leverage Nexperia’s expertise in wide bandgap technology, particularly their SiC MOSFETs, which we believe are among the best in the market. By sharing our insights from real-world EV charging applications, we aim to contribute to the development of even more optimized and tailored SiC devices that meet the specific demands of our next-generation solutions.”

    Nexperia is among the few companies that is offering a comprehensive range of WBG semiconductor technologies, including SiC diodes and MOSFETs, as well as GaN e-mode and d-mode devices, alongside its established silicon portfolio. With a strong commitment to expanding its commercial WBG offerings, Nexperia is focused on delivering the most suitable products to meet the needs of an increasing range of applications. The company’s focus is to support the responsible use of electrical energy through innovative solutions. Nexperia continues to develop technologies that address the growing demand for efficiency and sustainability in power management.

    Original – Nexperia

    Comments Off on Nexperia and KOSTAL Partner to Develop Topside Cooled SiC MOSFETs
  • Navitas Semiconductor to Showcase Latest Innovations at CPEEC & CPSSC 2024 in China

    Navitas Semiconductor to Showcase Latest Innovations at CPEEC & CPSSC 2024 in China

    3 Min Read

    Navitas Semiconductor will showcase its latest innovations at the 2024 China Power Electronics and Energy Conversion Conference and the 27th Annual Academic Conference and Exhibition of the China Power Supply Society (CPEEC & CPSSC 2024), held in Xi’an from November 8th – 11th, 2024.

    At ‘Planet Navitas’ (Booth 3-011), visitors can discover the AI Power Roadmap, which showcases the world’s first 8.5 kW OCP AI data center power supply implementing GaNSafe and Gen-3 Fast SiC MOSFETs, alongside the highest power density 4.5 kW AI data center power supply on the planet. Navitas also developed the ‘IntelliWeave’ patented digital control combined with high-power GaNSafe™ and Gen 3-Fast SiC MOSFETs, optimized for AI data center power supplies, enabling PFC peak efficiencies to 99.3% and reducing power losses by 30% compared to existing solutions.

    Additionally, industry-leading solutions include a 6.6kW 2-in-1 EV on-board charger (OBC) utilizing a hybrid GaNSafe and GeneSiC design and fast-charging solutions for consumer electronics with the latest GaNSlim family.

    The new GaNSlim family offers a highly integrated GaN solution with autonomous EMI control and loss-less sensing that enables the industry’s fastest, smallest, and most efficient solution in an optimized DPAK-4L package, ideal for mobile, consumer, and home appliance applications up to 500 W.

    Enabled by over 20 years of SiC innovation leadership, GeneSiC technology leads on performance with the Gen-3 Fast SiC MOSFETs with ‘trench-assisted planar’ technology. This proprietary technology provides world-leading performance over temperature, delivering cool-running, fast-switching, and superior robustness to support up to 3x more powerful AI data centers and faster charging EVs.

    As China’s premier power electronics event, CPSSC gathers industry leaders, researchers, and enterprises to explore breakthrough technologies shaping the future of power electronics. This year’s focus is on high-efficiency, high-power density solutions. “CPSSC is a key platform to showcase Navitas’ role in advancing power electronics,” said Charles Zha, VP & GM of Navitas China. “Our GaNSafe, GaNSlim, and Gen-3 Fast SiC technologies highlight our commitment to enabling higher efficiency, faster charging, and more powerful applications, aligning with CPSSC’s vision of powering the future.”

    Navitas will also present technical papers and host industrial sessions, sharing insights into GaN and SiC technologies and their real-world applications.

    Navitas’ CPSSC 2024 Program Highlights:

    • November 10
    • Paper Presentation:
      Research on Parasitic False Turn-On Behaviour of SiC MOSFETs with 0V Turn-Off Gate Voltage
      13:20-13:40 | Xiangyang Zhou, Bin Li, Xiucheng Huang, Jason Zhang
    • Industrial Session:
      Bi-Directional GaN for Improving Efficiency in Micro-Inverters
      14:30-15:00 | Simon Qin, Sr. Staff Application Engineer
    • November 11
    • Technical Presentation:         
      Achieving 99.4% Efficiency in GaN-based Interleaving CrM TTP PFC
      08:30-09:00 | Wenhao Yu, Sr. Application Engineer
    • Technology Showcase:
      GaNSlim IC: Redefining Efficiency in Cost-Effective Power Supplies
      10:20-10:50 | Ye Hu, Technical Marketing Manager
    • Industry Insights:
      Opportunities and Challenges of Single-Stage Converters for On-Board Chargers
      13:00-13:30 | Justin Zhu, Sr. Technical Marketing Manager

    Original – Navitas Semiconductor

    Comments Off on Navitas Semiconductor to Showcase Latest Innovations at CPEEC & CPSSC 2024 in China
  • Infineon Technologies Introduced the First Discrete Silicon Carbide Diode with 2000V Breakdown Voltage

    Infineon Technologies Introduced the First Discrete Silicon Carbide Diode with 2000V Breakdown Voltage

    2 Min Read

    Many industrial applications today are transitioning to higher power levels with minimized power losses, which can be achieved through increased DC link voltage. Infineon Technologies AG addresses this challenge by introducing the CoolSiC™ Schottky diode 2000 V G5, the first discrete silicon carbide diode on the market with a breakdown voltage of 2000 V. The product family is suitable for applications with DC link voltages up to 1500 VDC and offers current ratings from 10 to 80 A. This makes it ideal for higher DC link voltage applications such as in solar and EV charging applications.

    The product family comes in a TO-247PLUS-4-HCC package, with 14 mm creepage and 5.4 mm clearance distance. This, together with a current rating of up to 80 A, enables a significantly higher power density. It allows developers to achieve higher power levels in their applications with only half the component count of 1200 V solutions. This simplifies the overall design and enables a smooth transition from multi-level topologies to 2-level topologies.

    In addition, the CoolSiC Schottky diode 2000V G5 utilizes the .XT interconnection technology that leads to significantly lower thermal resistance and impedance, enabling better heat management.   Furthermore, the robustness against humidity has been demonstrated in HV-H3TRB reliability tests. The diodes exhibit neither reverse recovery current nor forward recovery and feature a low forward voltage, ensuring enhanced system performance.

    The 2000 V diode family is a perfect match for the CoolSiC MOSFETs 2000 V in the TO-247Plus-4 HCC package that Infineon introduced in spring 2024. The CoolSiC diodes 2000 V portfolio will be extended by offering them in the TO-247-2 package, which will be available in December 2024. A matching gate driver portfolio is also available for the CoolSiC MOSFETs 2000 V.

    Original – Infineon Technologies

    Comments Off on Infineon Technologies Introduced the First Discrete Silicon Carbide Diode with 2000V Breakdown Voltage
  • Bosch Engineering Unveils a Newly Developed SiC Based High-Performance Electrification Solution for Electrical Systems with Voltages of up to 800V

    Bosch Engineering Unveils a Newly Developed SiC Based High-Performance Electrification Solution for Electrical Systems with Voltages of up to 800V

    2 Min Read

    Electric drives are becoming increasingly prevalent in the boat and ship sector. At METSTRADE, Bosch Engineering is unveiling a newly developed, high-performance electrification solution for electrical systems with voltages of up to 800 volts, which further extends the potential use cases of electric drives in maritime applications while also raising system efficiency.

    “With the latest generation of our electric motor and inverter with silicon carbide power modules, we offer a complete system that allows not only recreational boats but also larger sailing yachts and working boats to be operated with an efficient, quiet, yet still very powerful electric drive,” states Philip Kurek, who is responsible for off-highway and maritime solutions at Bosch Engineering.

    The new electric motor SMG 230 is designed for system voltages of 400 to 800 volts. In an ideal voltage and temperature range, it offers a continuous power output of up to 200 kilowatts and around 250 newton meters of torque. Thanks to the 800-volt technology, the power density has also been increased significantly. The SMG 230 delivers 80 kilowatts more power than a comparable 400-volt machine with identical weight or, with the same level of performance, boasts more compact dimensions and a much lower weight.

    The inverter with silicon carbide semiconductors, which is also designed for electrical voltages of up to 800 volts, is characterized by its impressive efficiency of more than 99 percent. The silicon carbide semiconductors in the power modules enable faster switching operations, meaning that significantly less energy is lost in the form of heat.

    Bosch’s complete kit for the electrification of boat drives comprises electronic control units, inverters, electric motors, and transmissions for both 400- and 800-volt applications. This gives shipyards and system integrators maximum flexibility when adapting the electrification strategy to the respective requirements and allows them to integrate the relevant components quickly and easily into their ships. The system components are based on modern automotive technology and combine high robustness with utmost reliability. With its comprehensive kit for the electrification of ship drives, Bosch is making a crucial contribution to the ongoing reduction of greenhouse gas and noise emissions.

    Original – Bosch

    Comments Off on Bosch Engineering Unveils a Newly Developed SiC Based High-Performance Electrification Solution for Electrical Systems with Voltages of up to 800V
  • Navitas Semiconductor Reveals New ‘IntelliWeave’ Control Technique to Power Next-Gen AI Data Centers above 99% Efficiency

    Navitas Semiconductor Reveals New ‘IntelliWeave’ Control Technique to Power Next-Gen AI Data Centers above 99% Efficiency

    2 Min Read

    At this month’s IEEE Energy Conversion Congress and Expo (ECCE), Navitas Semiconductor introduced conference attendees to ‘IntelliWeave’ – an innovative patented new digital control technique for improving next generation AI data center power supply (PSU) efficiency.

    In a world where ever-more energy is needed for the processing of artificial intelligence (AI) and cloud-based applications, minimizing power consumption has become a priority for data center architects and operators. Combining next-generation GaN and SiC semiconductors with new control technique strategies to power conversion plays a key role in achieving this goal.

    IntelliWeave’s novel digital control enables highest system efficiencies with precision current sharing, ultra-fast dynamic response and minimal phase error. A patented dual-loop and dual-feed-forward interleaving control achieves absolute zero voltage switching (ZVS) across the full-load range to enable highest efficiencies.

    The digital control for Critical Conduction Mode (CRM) interleaving Totem Pole Power Factor Control (PFC) enables 30% reduction in power losses compared to existing Continuous Conduction Mode (CCM) solutions. The digital control combined with high-power GaNSafe power ICs has been proven on a 500 kHz GaN-based interleaving 3.2 kW CrM PFC PSU operating at 99.3% peak efficiency including EMI filter loss.

    Taking place in Phoenix, Arizona from October 20th to 24th, IEEE ECCE 2024 features both industry-driven and application-oriented technical sessions and brings together practicing engineers, researchers and other professionals for interactive and multidisciplinary discussions on the latest advances in various areas related to energy conversion. 

    On October 21st Tao Wei presented “Novel digital control for a GaN-based CrM interleaved TP PFC”.

    Original – Navitas Semiconductor

    Comments Off on Navitas Semiconductor Reveals New ‘IntelliWeave’ Control Technique to Power Next-Gen AI Data Centers above 99% Efficiency
  • Infineon Technologies Introducing HybridPACK™ Drive G2 Fusion

    Infineon Technologies Introducing HybridPACK™ Drive G2 Fusion

    3 Min Read

    Affordability combined with high performance and efficiency is the key to making electric mobility accessible to a broader market. That’s why Infineon Technologies AG is introducing the HybridPACK™ Drive G2 Fusion, establishing a new power module standard for traction inverters in the e-mobility sector.

    The HybridPACK Drive G2 Fusion is the first plug’n’play power module that implements a combination of Infineon’s silicon and silicon carbide (SiC) technologies. This cutting-edge solution provides an ideal balance between performance and cost efficiency, giving more choice in the optimization of inverters.

    One of the main differences between silicon and SiC in power modules is that SiC has a higher thermal conductivity, breakdown voltage and switching speed, making it more efficient, but also more expensive than silicon-based power modules. With the new module, the SiC content per vehicle can be reduced, while maintaining vehicle performance and efficiency at a lower system cost. For example, system suppliers can realize nearly the system efficiency of a full SiC solution with only 30 percent SiC and 70 percent silicon area.

    “Our new HybridPACK Drive G2 Fusion module underlines Infineon’s innovation leadership in the automotive semiconductor industry,” said Negar Soufi-Amlashi, Senior Vice President & General Manager High Voltage at Infineon’s Automotive division. “Addressing the demand for greater e-mobility range, this technological breakthrough smartly combines silicon carbide and silicon. Integrated in a well-introduced module package footprint it offers compelling cost-performance ratio over pure silicon carbide modules without adding system complexity for automotive system suppliers and vehicle manufacturers.” 

    HybridPACK Drive G2 Fusion expands Infineon’s HybridPACK Drive power module portfolio and can be quickly and easily integrated in vehicle components or modules without requiring complex adjustments or configurations. The HybridPACK Drive G2 Fusion module features up to 220 kW in the 750 V class. It ensures high reliability over the entire temperature range from -40 °C to +175 °C and improved thermal conductivity.

    The unique properties of Infineon’s CoolSiC™ technology and its silicon IGBT EDT3 technology with very fast turn-on enable the use of a single gate driver or dual gate drivers. This allows easy re-design from full silicon or full SiC based inverters to a fusion inverter. Generally, Infineon’s holistic expertise in SiC MOSFET and silicon IGBT technology, power module packaging, gate drivers as well as sensors enables premium products with cost savings at system level. One example is the integration of Swoboda or XENSIV™ Hall sensors in the HybridPACK Drive package for more precise and efficient motor control.

    Infineon will showcase the new HybridPACK Drive G2 Fusion at electronica 2024 in Munich from November 12 to 15 (hall C3, booth 502). 

    Original – Infineon Technologies

    Comments Off on Infineon Technologies Introducing HybridPACK™ Drive G2 Fusion