-
LATEST NEWS / PROJECTS / SiC / TOP STORIES / WBG3 Min Read
Coherent Corp. and Mitsubishi Electric Corporation have signed a memorandum of understanding (MOU) to collaborate on a program to scale manufacturing of SiC power electronics on a 200 mm technology platform.
The market for electric vehicles is expanding worldwide and is just one of several emerging applications driving the exponential growth in SiC power devices, which have lower energy losses, higher operating temperatures, and higher switching speeds compared with power devices based on silicon. The high efficiency of SiC power devices is expected to be a significant contributor to global decarbonization and the green transformation.
To meet the rapidly growing demand, Mitsubishi Electric announced an investment of approximately 260 billion yen in the five-year period ending March 2026. A major portion of the investment, approximately 100 billion yen, will be used to construct a new plant for SiC power devices, based on a 200 mm technology platform, and enhance related production facilities. Under the MOU, Coherent will develop a supply of 200 mm n-type 4H SiC substrates for Mitsubishi Electric’s future SiC power devices manufactured at the new facility.
“We are excited to build on our relationship with Mitsubishi Electric, a pioneer in SiC power devices and a global market leader in SiC power modules for high-speed trains, including the famous Shinkansen in Japan,” said Sohail Khan, Executive Vice President, New Ventures & Wide-Bandgap Electronics Technologies at Coherent. “We have a long track record of supplying SiC substrates to Mitsubishi Electric and are looking forward to expanding our relationship with them to scale their new 200 mm SiC platform.”
“Coherent has been for many years a reliable supplier of high-quality 150 mm SiC wafer substrates to Mitsubishi Electric,” said Masayoshi Takemi, Executive Officer, Group President, Semiconductor & Device at Mitsubishi Electric. “We are delighted to enter into this close partnership with Coherent to scale our respective SiC manufacturing platforms to 200 mm.”
Coherent has decades of experience in the development of SiC materials. The company demonstrated the world’s first 200 mm conductive substrates in 2015. In 2019, Coherent began to supply 200 mm SiC substrates under REACTION, a Horizon 2020 four-year program funded by the European Commission.
Over the years, Mitsubishi Electric has led the SiC power module markets for high-speed trains, high-voltage industrial applications, and home appliances. Mitsubishi Electric made history by launching the world’s first SiC power modules for air conditioners in 2010, and became the first supplier of a full SiC power module for Shinkansen high-speed trains in 2015. Mitsubishi Electric has also built extensive expertise by serving customers’ needs for high performance and high reliability through its outstanding techniques of processing and screening, as well as many other facets of developing and manufacturing SiC power modules.
Power electronics based on SiC have demonstrated their potential to have a highly beneficial impact on the environment via significant reductions in carbon dioxide emissions. Through the rapidly growing demand for SiC power devices, Coherent and Mitsubishi Electric will accelerate their contribution to sustainable energy consumption and the decarbonization of society.
Original – Coherent
-
LATEST NEWS / SiC / TOP STORIES3 Min Read
Penn State and onsemi, a leader in intelligent power and sensing technologies, announced the signing of a memorandum of understanding (MOU) towards an $8 million strategic collaboration which includes the establishment of the onsemi Silicon Carbide Crystal Center (SiC3) at Penn State’s Materials Research Institute (MRI). onsemi will fund SiC3 with $800k per year over the next 10 years.
Silicon carbide (SiC) is vital for enabling efficiency in electric vehicles (EVs), EV charging and energy infrastructure and contributes to the decarbonization of the global economy. Academic research in SiC made great advancements in the late 1990s and early 2000s, but has since diminished in the U.S. This agreement will put SiC crystal research in America back on the map.
In addition to conducting SiC research at SiC3, Penn State and onsemi will raise awareness about the increasing demand for tech jobs in the semiconductor industry. This is part of their efforts to enhance the share of U.S. semiconductor manufacturing. They also will partner on workforce development initiatives such as internship and cooperative programs and include SiC and wide bandgap crystal studies in Penn State’s curriculum. The relationship with Penn State is part of onsemi’s commitment to promoting STEAM (Science, Technology, Engineering, Arts, and Mathematics) education, ranging from helping K-12 students in underserved communities to university collaborations that support the development of the workforce for today and the future.
Lora Weiss, Penn State senior vice president of research, noted that the Penn State-onsemi collaboration is a match that makes perfect sense given each entity’s demonstrated strengths.
“onsemi is a proven innovator, delivering a comprehensive portfolio of intelligent power and sensing technologies to enable and accelerate sustainable solutions across multiple markets,” Weiss said. “At the same time, as per the National Science Foundation’s research expenditure rankings, Penn State is ranked first in materials science and second in materials engineering. We have world-class nanofab and characterization facilities that support research on thin films, silicon carbide and other materials used in semiconductors and other technologies. These complementary capabilities between onsemi and Penn State will have a strong impact on research and development, economic growth, and workforce development.”
Penn State’s capabilities make them an ideal academic partner for onsemi to advance the state of the art in silicon crystal growth.
“Penn State is uniquely positioned to rapidly establish a silicon carbide crystal growth research program,” said Pavel Freundlich, chief technology officer, Power Solutions Group, onsemi. “The university offers a wide breadth of capability based on its current materials research, wafer processing capabilities in its nanofab facility, and a comprehensive, world-class suite of metrology instrumentation.”
The relationship developed over a period of due diligence during which it became clear that their cooperative efforts would position Penn State and onsemi as leaders in SiC research.
“Over the next decade, this collaboration will enable Penn State to become the nation’s leading resource for semiconductor crystal science and workforce development,” said Justin Schwartz, Penn State executive vice president and provost. “And this would not be possible without the relationship-building efforts of Priya Baboo, senior director of corporate and industry engagement, and the technical expertise of Joshua Robinson, professor of materials science and engineering, and their counterparts at onsemi.” Scott Allen, vice president, University Relations, onsemi, added that “Penn State’s expansion of its curriculum to offer specialty courses in SiC and wideband gap technology will play a key role in meeting onsemi’s strategic workforce development goals and help to meet American semiconductor workforce goals as outlined in the recently signed CHIPS and Science Act.”
Original – onsemi
-
GaN / SiC / TOP STORIES2 Min Read
AIXTRON SE plans to invest up to 100 million euros at its Herzogenrath site. A new innovation center is to be built, which will provide the manufacturer of deposition equipment to the semiconductor industry with enhanced capacities for research and development. AIXTRON received approval for the new project from the company’s Supervisory Board.
The new innovation center will provide 1000m2 of cleanroom space and will be built on the company’s premises in Herzogenrath, Germany. The new building will create further capacities for the next product generations which are already in preparation, as well as for further product developments beyond that.
“With our products, we address the megatrends of digitalization, electromobility and energy efficiency and are experiencing a strong and steadily growing demand. Technical innovations and product developments that precisely address the needs of our customers are the key to our success. And our dynamic environment offers us further growth opportunities,” says Dr. Felix Grawert, CEO of AIXTRON SE. “We are therefore very pleased that the Supervisory Board has approved this project which will enable us to create the foundation for further product developments and for future growth.”
The importance of product development in the dynamic semiconductor industry is demonstrated by the success of AIXTRON’s new “G10” system generations. In the first year after market introduction, AIXTRON expects to generate more than 40 percent of its annual revenues with this new product generation. Right after its official launch, the new tool for the silicon carbide material system (G10-SiC) has already generated a high order intake. And it is expected to continue to drive further growth all throughout 2023 and beyond.
Also, the new AIXTRON solution for the gallium-arsenide/indium-phosphite material system (G10-AsP) which was launched at the beginning of 2023 already enjoys a strong demand. For the first time, it enables the high-volume production of Micro LEDs and photonic components such as lasers on wafers with a diameter of up to 200mm. Later in the year, the new G10 system for gallium nitride (GaN) will also be launched. The material systems SiC and GaN have the potential to fully cover the complete range of power electronics, from electromobility to renewable energy technologies to fast data transmission. With their outstanding material properties, they will ensure a significant reduction in global CO2 emissions in these areas and help electromobility achieve a breakthrough.
Original – AIXTRON
-
LATEST NEWS / PROJECTS / Si / SiC / WBG2 Min Read
onsemi announced that Sineng Electric will integrate onsemi EliteSiC silicon carbide (SiC) MOSFETs and IGBT-based high-density power integrated modules (PIMs) into its utility-scale solar inverter and industry-first 200kW energy storage system (ESS). The two companies worked together to develop optimized solutions that maximize the performance of solar inverters, energy storage and power conversion systems.
Sineng’s work with onsemi EliteSiC has led to the launch of a utility-scale solar string inverter, which offers simplicity in design, reduced maintenance costs and lower downtimes compared to a centralized inverter solution. The adoption of onsemi’s highly optimized single-stage PIM with multi-level topology in 200KW ESS enables industry leading system efficiency and lower total cost of ownership.
“onsemi supports us in solving the most challenging technical problems such as system-level design, simulations, thermal analysis and creation of sophisticated control algorithms,” said Qiang Wu, chairman of Sineng Electric. “Integrating the highly efficient EliteSiC technology enables us to develop and implement cutting-edge renewable energy solutions tailored to our customers’ needs. In combination with onsemi’s end-to-end SiC supply chain, we have the supply assurance to plan for long-term growth.”
Both companies will continue to collaborate on the development of new high-power products to enable a broader range of renewable energy solutions. As part of this process, Sineng will adopt more EliteSiC products, thereby benefitting from efficiency and scale.
“Together, we will leverage the benefits of onsemi’s high performance products and Sineng Electric’s expertise in power electronics system design to deliver industry leading solutions for sustainable energy applications,” said Asif Jakwani, senior vice president and general manager, Advanced Power Division, onsemi. “Our continuous pursuit to improve overall system efficiency plays a pivotal role in society moving towards the goal of a net-zero emissions future.”
The two companies expect to extend their existing long-term supply agreement (LTSA), signed in late 2022, further demonstrating their commitment to collaboration and innovation.
Original – onsemi
-
LATEST NEWS / PRODUCT & TECHNOLOGY / Si / SiC / TOP STORIES2 Min Read
Power Integrations, the leader in gate-driver technology for medium- and high-voltage inverter applications, introduced the SCALE-iFlex™ LT NTC family of IGBT/SiC module gate drivers. The new gate drivers target the popular new dual, 100 mm x 140 mm style of IGBT modules, such as the Mitsubishi LV100 and the Infineon XHP 2, as well as silicon carbide (SiC) variants thereof up to 2300 V blocking voltage. The SCALE-iFlex LT NTC drivers provide Negative Temperature Coefficient (NTC) data – an isolated temperature measurement of the power module – which enables accurate thermal management of converter systems. This is particularly important for systems with multiple modules arrayed in parallel, ensuring proper current sharing and dramatically enhancing overall system reliability.
Thorsten Schmidt, product marketing manager at Power Integrations, commented: “Designers of renewable energy and rail systems using SCALE-iFlex drivers already benefit from increased system performance; the SCALE-iFlex approach handles paralleling so expertly that one module in five can be eliminated without loss of performance or current de-rating. Adding an isolated NTC output reduces hardware complexity – particularly cables and connectors – and contributes to system observability and overall performance.”
Based on Power Integrations’ proven SCALE™-2 technology, SCALE-iFlex LT gate drivers improve current sharing accuracy and therefore increase the current carrying capability of multiple-paralleled modules by 20 percent, allowing users to significantly increase the semiconductor utilization of their converter stacks. This is possible because the localized control of each 2SMLT0220D MAG (Module Adapted Gate driver) unit ensures precise control and switching, enabling excellent current sharing. Advanced Active Clamping (AAC) is employed to deliver accurate overvoltage protection.
To further increase space saving, up to four MAG-driven power modules can be parallel-connected from a single 2SILT1200T Isolated Master Control (IMC) unit, which can also be mounted on a power module due to its compact outline. The gate drivers are fully qualified to IEC 61000-4-x (EMI), IEC-60068-2-x (environmental) and IEC-60068-2-x (mechanical) specifications, and undergo complete type testing – low voltage, high voltage, thermal cycling – shortening designer development time by 12 to 18 months. A comprehensive set of protection features is included, and parts are optionally available with conformal coating.
Original – Power Integrations
-
LATEST NEWS / PROJECTS / SiC / TOP STORIES / WBG2 Min Read
Infineon Technologies AG, the global leader in automotive semiconductors, and Hon Hai Technology Group (“Foxconn”), the world’s largest electronics manufacturing services provider, aim to establish a long-term partnership in the field of electric vehicles (EV) to jointly develop advanced electromobility with efficient and intelligent features. The Memorandum of Understanding (MoU) focuses on silicon carbide (SiC) development, leveraging Infineon’s automotive SiC innovations and Foxconn’s know-how in automotive systems.
“The automotive industry is evolving. With the rapid growth of the EV market and the associated need for more range and performance, the development of electromobility must continue to advance and innovate,” said Peter Schiefer, President of the Infineon Automotive Division. “Infineon’s commitment and passion for innovation and zero-defect quality has made us the best partner for our customers. We look forward to writing a new chapter in electromobility together with Foxconn.”
“We are pleased to be working with Infineon and are confident that this collaboration will result in optimized architecture, product performance, cost competitiveness and high system integration to provide customers with the most competitive automotive solutions,” said Jun Seki, Foxconn’s Chief Strategy Officer for EVs.
According to the MoU, the two companies will collaborate on the implementation of SiC technology in automotive high-power applications like traction inverters, onboard chargers, and DC-DC converters. Both parties intend to jointly develop EV solutions with outstanding performance and efficiency based on Infineon’s automotive system understanding, technical support and SiC product offerings combined with Foxconn’s electronics design and manufacturing expertise and the capability of system-level integration.
In addition, the two companies plan to establish a system application center in Taiwan to further expand the scope of their cooperation. This center will focus on optimizing vehicle applications, including smart cabin applications, advanced driver assistance systems and autonomous driving applications. It will also address electromobility applications such as battery management systems and traction inverters. The collaboration covers a wide range of Infineon’s automotive products, including sensors, microcontrollers, power semiconductors, high-performance memories for specific applications, human machine interface and security solutions. The system application center is expected to be established within 2023.
Original – Infineon Technologies
-
LATEST NEWS / PRODUCT & TECHNOLOGY / SiC / TOP STORIES / WBG2 Min Read
onsemi, a leader in intelligent power and sensing technologies, announced the release of the latest generation of 1200 V EliteSiC silicon carbide (SiC) M3S devices, which enable power electronics designers to achieve best-in-class efficiency and lower system cost. The new portfolio includes EliteSiC MOSFETs and modules that facilitate higher switching speeds to support the growing number of 800 V electric vehicle (EV) on-board charger (OBC) and energy infrastructure applications, such as EV charging, solar and energy storage systems.
Also, part of the portfolio, are new EliteSiC M3S devices in half-bridge power integrated modules (PIMs) with industry leading lowest Rds(on) in a standard F2 package. Targeting industrial applications, the modules are ideally suited for DC-AC, AC-DC and DC-DC high power conversion stages. They provide higher levels of integration with optimized direct bonded copper designs to enable balanced current sharing and thermal distribution between parallel switches. The PIMs are designed to deliver high power density in energy infrastructure, EV DC fast charging and uninterruptible power supplies (UPS).
“onsemi’s latest generation of automotive and industrial EliteSiC M3S products will allow designers to reduce their application footprint and system cooling requirements,” said Asif Jakwani, senior vice president and general manager of the Advanced Power Division, onsemi. “This helps designers to develop high power converters with higher levels of efficiency and increased power densities.”
The automotive-qualified 1200 V EliteSiC MOSFETs are tailored for high-power OBCs up to 22 kW and high voltage to low voltage DC-DC converters. M3S technology has been developed specifically for high-speed switching applications and has the best-in-class figure of merits for switching losses.
Original – onsemi
-
PRODUCT & TECHNOLOGY / SiC / TOP STORIES3 Min Read
Texas Instruments (TI), a leader in high-voltage technology, debuted a highly integrated, functional safety-compliant, isolated gate driver that enables engineers to design more efficient traction inverters and maximize electric vehicle (EV) driving range. The new UCC5880-Q1 reinforced isolated gate driver offers features that enable EV powertrain engineers to increase power density and reduce system design complexity and cost while achieving their safety and performance goals.
As EVs continue to grow in popularity, semiconductor innovations in traction inverter systems are helping overcome critical barriers to widespread adoption. Automakers can build safer, more efficient and more reliable silicon carbide (SiC)- and insulated-gate bipolar transistor (IGBT)-based traction inverters by designing with UCC5880-Q1, featuring real-time variable gate-drive strength, Serial Peripheral Interface (SPI), advanced SiC monitoring and protection, and diagnostics for functional safety.
“Designers of high-voltage applications like traction inverters face a unique set of challenges to optimize system efficiency and reliability in a small space,” said Wenjia Liu, product line manager for high-power drivers at TI. “Not only does this new isolated gate driver help enable engineers to maximize driving range, but it also integrates safety features to reduce external components and design complexity. And it can be easily paired with other high-voltage power-conversion products such as our UCC14141-Q1 isolated bias supply module to improve power density and help engineers reach the highest levels of traction inverter performance.”
The need for higher reliability and power performance for EVs is continuously growing, as efficiency gains have a direct impact on operating range improvement per charge. But achieving any increase in efficiency is difficult for designers, given that the majority of traction inverters already operate at 90% efficiency or higher.
By varying the gate-drive strength in real time, in steps between 20 A and 5 A, designers can improve system efficiency with the UCC5880-Q1 gate driver as much as 2% by minimizing SiC switching power losses, resulting in up to 7 more miles of EV driving range per battery charge. For an EV user who charges their vehicle three times per week, that could mean more than 1,000 additional miles per year. To learn more, read the technical article, “How to Maximize SiC Traction Inverter Efficiency with Real-Time Variable Gate Drive Strength.”
In addition, the UCC5880-Q1’s SPI programmability and integrated monitoring and protection features can reduce design complexity as well as external component costs. Engineers can further reduce components and quickly prototype a more efficient traction inverter system using the SiC EV Traction Inverter Reference Design. This customizable, tested design includes the UCC5880-Q1, a bias-supply power module, real-time control MCUs and high-precision sensing.
Original – Texas Instruments
-
LATEST NEWS / PRODUCT & TECHNOLOGY / SiC / TOP STORIES / WBG
Navitas Launches into High-Power Markets with GeneSiC SiCPAK™ Modules and Accelerates Bare-Die Sales
2 Min ReadNavitas Semiconductor, the only pure-play, next-generation power semiconductor company, announced their expanded portfolio into higher power markets with their leading-edge silicon carbide (SiC) power products in SiCPAK™ modules and bare die.
Target applications cover centralized and string solar inverters, energy storage systems (ESS), industrial motion, electric vehicle (EV) on-board chargers, EV roadside fast chargers, wind energy, UPS, bi-directional microgrids, DC-DC converters, and solid-state circuit breakers.
Ranging from 650 V to 6,500 V, Navitas has the widest range of SiC technology. From an original line-up of discrete packages – from 8×8 mm surface-mount QFNs to through-hole TO-247s – the GeneSiC SiCPAK is an initial, direct entry point into higher-power applications. A comprehensive power-module roadmap, with high-voltage SiC MOSFETs and MPS diodes, GaN power ICs, high-speed digital isolators and low-voltage silicon control ICs is being mapped out.
Dr. Ranbir Singh, Navitas EVP for SiC noted, “With a complete portfolio of leading-edge power, control and isolation technology, Navitas will enable customers to accelerate the transition from fossil fuels, and legacy silicon power products to new, renewable energy sources and next-generation semiconductors, with more powerful, more efficient, faster-charging systems.”
SiCPAK™ modules employ ‘press-fit’ technology to offer compact form factors for power circuits and deliver cost-effective, power-dense solutions to end users. The modules are built upon GeneSiC die that have already made a mark in terms of superior performance, reliability, and ruggedness. Examples include a SiCPAK half-bridge module, rated at 6 mOhm, 1,200 V with industry-leading trench-assisted planar-gate SiC MOSFET technology. Multiple configurations of SiC MOSFETs and MPS diodes will be available to create application-specific modules for superior system performance. The initial release will include 1,200 V-rated half-bridge modules in 6, 12, 20, and 30mOhm ratings.
Within the lead-free SiCPAK, each SiC chip is silver (Ag) sintered to the module’s substrate for superior cooling and reliability. The substrate itself is ‘direct-bonded copper’ (DBC) and manufactured using an active-metal brazing (AMB) technique on silicon-nitride (Si3N4) ceramics, ideal for power-cycling applications. This construction delivers excellent strength and flexibility, fracture resistance, and good thermal conductivity for cool, reliable, long-life operation.
For customers who prefer to make their own high-power modules, all GeneSiC MOSFET and MPS diodes are available in bare die format, with gold (Au) and aluminum (Al) top-side metalizations.
Original – Navitas Semiconductor
-
LATEST NEWS / PROJECTS / SiC / TOP STORIES / WBG3 Min Read
As part of their strategic partnership announced earlier this year, ZF Friedrichshafen AG, a leading global technology company of next generation mobility, and Wolfspeed Inc, the global leader in Silicon Carbide technology, announced their plans to establish a joint European R&D center for Silicon Carbide power electronics in the Nuremberg Metropolitan Region.
The new joint research facility is supported by the German federal government and the regional government of Bavaria. Like the planned Wolfspeed Silicon Carbide chip factory in Ensdorf, Saarland, funding for the new center is subject to approval by the European Commission under the EU’s Important Project of Common European Interest (IPCEI) scheme, as well as antitrust authorities. The aim is to develop the two facilities to become the cornerstone of a new European Silicon Carbide technology network.
Construction will begin after IPCEI funding approval has been secured for both projects, which is expected later this year. The goal of the collaboration is to develop breakthrough innovations for Silicon Carbide systems, products, and applications, covering the full value chain from module to complete systems and thus reducing time-to-market significantly. The joint research center will target requirements in all mobility segments including consumer, commercial, agricultural, and industrial vehicles, as well as in the industrial and renewable energy markets. The collaboration aims to drive improvements such as higher efficiency, increased power density and higher performance of electrification solutions. Wolfspeed’s Silicon Carbide expertise and ZF’s access to all mobility segments allows for a fast and seamless transition of new technologies.
ZF and Wolfspeed are partnering with other leading organizations from the scientific and industrial communities to establish a comprehensive European Silicon Carbide technology network. To this end, ZF will use its membership in the European Center of Power Electronics (ECPE) and share key research results at the European level. Over time, the research center is planned to develop into an electronics and semiconductor campus.
“The research center is of outstanding importance for the energy and mobility transition in the EU and supports the strategic goals of Europe,” says Dr Holger Klein, CEO of ZF. “In addition, optimizing Silicon Carbide technology advances industrial transformation and strengthens the independence of European supply chains.”
“This research facility further strengthens our partnership with ZF and underlines our long-term commitment to turn our unique know-how from more than 35 years of experience in Silicon Carbide power electronics into state-of-the-art solutions for our industry partners,” comments Gregg Lowe, CEO of Wolfspeed Inc.
The strategic partnership links ZF, one of the world’s leading suppliers of electric drives, with Wolfspeed, the world’s most recognized specialist in Silicon Carbide technology. “This connection is unique and will lead to enormous advances in Silicon Carbide-based electrical systems and electric drives,” says ZF Board of Management member Stephan von Schuckmann. “This is made possible by the close networking of the research center and production, because fundamentally redesigned Silicon Carbide chips also require new production processes.”
Original – Wolfspeed