• Soitec and Tokai Carbon to Develop Polycrystalline SiC Substrates for SmartSiC™ Wafers

    Soitec and Tokai Carbon to Develop Polycrystalline SiC Substrates for SmartSiC™ Wafers

    2 Min Read

    Soitec and Tokai Carbon, a comprehensive manufacturer of carbon and graphite products, have entered into a strategic partnership for the development and supply of polycrystalline silicon carbide substrates specifically designed for Soitec SmartSiC™ wafers.

    Silicon carbide is a disruptive compound semiconductor and SmartSiC™ engineered substrates accelerate the adoption of silicon carbide for electric mobility, industrial and smart grid applications by delivering superior manufacturing and cost efficiencies with an improved environmental footprint.

    Under this partnership, which will see Tokai Carbon supply 150mm and 200mm poly-SiC wafers to Soitec, the two companies are harnessing their advanced R&D capabilities to enhance the SmartSiC™ ecosystem. Tokai Carbon’s advanced technology and manufacturing capacity in polycrystalline silicon carbide (polySiC) combined with the right to use Soitec specifications for polySiC coarse wafers compliant with Soitec SmartSiC™ is expected to make a strategic contribution to the global ramp-up of SmartSiC™ wafer production.

    Cyril Menon, Chief Operations Officer of Soitec, stated: “This partnership with Tokai marks yet another key step in the ramp-up of Soitec’s SmartSiC™ technology to address fast-growing markets such as electric mobility and industrial electrification. Tokai’s top quality SiC products and R&D capabilities, combined with Soitec’s innovative SmartSiC™ technology, can help to accelerate global adoption of electric mobility and other SiC technologies. This is an important milestone in terms of perception and value creation for the SmartSiC™ ecosystem.”

    Hajime Nagasaka, CEO of Tokai Carbon, commented. “The polycrystalline SiC substrate to be supplied to Soitec is a strategic product in our solid SiC product series. We are pleased to see our long years of research and development come to fruition in this way, and we have high expectations for this product in the SiC semiconductor market, which is expected to expand significantly in the future. The partnership with Soitec is also very meaningful in terms of contributing to the realization of a sustainable society.”

    Original – Soitec

    Comments Off on Soitec and Tokai Carbon to Develop Polycrystalline SiC Substrates for SmartSiC™ Wafers
  • X-FAB and Soitec to Offer SmartSiC™ Wafers for Production of SiC Power Devices in Texas 

    X-FAB and Soitec to Offer SmartSiC™ Wafers for Production of SiC Power Devices in Texas 

    2 Min Read

    X-FAB and Soitec will begin work to offer Soitec’s SmartSiC™ wafers for the production of silicon carbide power devices at X-FAB’s plant in Lubbock, Texas. 

    This collaboration follows the successful completion of the assessment phase, during which silicon carbide (SiC) power devices were manufactured at X-FAB Texas on 150mm SmartSiC™ wafers. Soitec will offer X-FAB’s customers easy access to the SmartSiC™ substrate through a joint supply chain consignment model.

    X-FAB is the pioneer and leader of the foundry model in the fast-growing SiC market. Silicon carbide (SiC) is a disruptive compound semiconductor material with intrinsic properties providing superior performance and efficiency over silicon in power applications. 

    SmartSiC™ is a proprietary Soitec technology based on the company’s SmartCut™ process, in which a thin layer of a high-quality monocrystalline (mono-SiC) ‘donor’ wafer is split off and bonded to a low resistivity polycrystalline (poly-SiC) ‘handle’ wafer. The resulting substrate offers improved device performance and manufacturing yields. The process allows multiple re-uses of a single donor wafer, significantly reducing cost and related CO2 emissions. 

    In this fast-growing market, Soitec is ramping production of SmartSiC™ substrates at its new plant of Bernin, near Grenoble (France). X-FAB is increasing production capacity for SiC devices at the Lubbock plant. The use of the SmartSiC™ substrate enables X-FAB’s customers to design smaller devices, resulting in efficiency improvements through an increased number of dies per wafer. The benefit of reduced CO2 emissions from the substrate manufacturing process will also contribute to X-FAB’s initiative to reduce its overall carbon footprint.

    Sophie Le-Guyadec VP Procurement of X-FAB, states: “As the leading SiC foundry, we want to provide our customers the full range of opportunities to design innovative and robust SiC devices for electric vehicles, renewable power and industrial applications. To offer the most advanced silicon carbide processes and manufacturing capabilities, we jointly agreed to provide our customers easy access to Soitec’s innovative SmartSiC™ via a consignment model.”

    Emmanuel Sabonnadiere, Soitec Executive Vice President Automotive and Industry comments: “Soitec’s SmartSiC substrates and X-FAB’s foundry services are a perfect fit to meet increasing demand for new SiC products. This cooperation is a significant milestone for the deployment of SmartSiC in the U.S. market and internationally, thanks to X-FAB’s global footprint.”

    Original – X-FAB

    Comments Off on X-FAB and Soitec to Offer SmartSiC™ Wafers for Production of SiC Power Devices in Texas 
  • Nexperia Announced Availability of 1200 V SiC MOSFETs in D2PAK-7 SMD Package

    Nexperia Announced Availability of 1200 V SiC MOSFETs in D2PAK-7 SMD Package

    2 Min Read

    Nexperia announced that it is now offering its industry leading 1200 V silicon carbide (SiC) MOSFETs in D2PAK-7 surface mount device (SMD) packaging, with a choice of 30, 40, 60, and 80 mΩ RDSon values. This announcement follows on from Nexperia’s late-2023 release of two discrete SiC MOSFETs in 3 and 4-pin TO-247 packaging and is the latest offering in a series which will see its SiC MOSFET portfolio swiftly expand to include devices with RDSon values of 17, 30, 40, 60 and 80 mΩ in flexible package options. 

    With the release of the NSF0xx120D7A0, Nexperia is addressing the growing market demand for high performance SiC switches in SMD packages like D2PAK-7, which is becoming increasingly popular in various industrial applications including electric vehicle (EV) charging (charge pile, offboard charging), uninterruptible power supplies (UPS) and inverters for solar and energy storage systems (ESS).

    It is also further testimony to Nexperia’s successful strategic partnership with Mitsubishi Electric Corporation (MELCO), which has seen the two companies join forces to push the energy efficiency and electrical performance of SiC wide bandgap semiconductors to the next level, while additionally future-proofing production capacity for this technology in response to ever growing market demand.

    RDSon is a critical performance parameter for SiC MOSFETs because it impacts conduction power losses. However, many manufacturers concentrate on the nominal value, neglecting the fact that it can increase by more than 100% as device operating temperatures rise, resulting in considerable conduction losses.

    Nexperia identified this as a limiting factor in the performance of many currently available SiC devices and leveraged the features of its innovative process technology to ensure that its new SiC MOSFETs offer industry-leading temperature stability, with the nominal value of RDSon increasing by only 38% over an operating temperature range from 25 °C to 175 °C.

    Tightest threshold voltage, VGS(th) specification, allows these discrete MOSFETs to offer balanced current-carrying performance when connected in parallel. Furthermore, low body diode forward voltage (VSD) is a parameter which increases device robustness and efficiency, while also relaxing the dead-time requirement during freewheeling operation.

    Original – Nexperia

    Comments Off on Nexperia Announced Availability of 1200 V SiC MOSFETs in D2PAK-7 SMD Package
  • Taiwan Semiconductor Announced a Family of 650V SiC SBDs

    Taiwan Semiconductor Announced a Family of 650V SiC SBDs

    1 Min Read

    Taiwan Semiconductor – a global supplier of discrete power electronics devices, LED drivers, analog ICs and ESD protection devices – announced a family of 650V silicon carbide Schottky barrier diodes which are suitable for high-efficiency AC-DC, DC-DC and DC-AC conversion applications.

    Unlike silicon-based fast-recovery rectifiers, these SiC devices have negligible switching losses due to low capacitive charge (QC). This makes them suitable for high-speed switching applications, benefitting circuit designs with increased power density and can reduce overall solution size.

    Key Features

    • Max. junction temperature 175°C
    • High-speed switching
    • High frequency operation
    • Positive temperature coefficient on VF
    • SPICE Models available
    • Thermal Models available

    Applications

    • AD-DC conversion – PFC Boost
    • DC-DC, Solar inverters
    • Data center and server power
    • Telecom – Datacom power
    • UPS systems

    Circuit Functions

    • PFC boost diode
    • Free-wheeling diode
    • Full wave bridge
    • Vienna bridgeless circuit

    Original – Taiwan Semiconductor

    Comments Off on Taiwan Semiconductor Announced a Family of 650V SiC SBDs
  • Littelfuse Introduced a New Low-side SiC MOSFET and IGBT Gate Driver

    Littelfuse Introduced a New Low-side SiC MOSFET and IGBT Gate Driver

    3 Min Read

    Littelfuse, Inc. announced the launch of the IX4352NE Low-side SiC MOSFET and IGBT Gate Driver. This innovative driver is specifically designed to drive Silicon Carbide (SiC) MOSFETs and high-power Insulated Gate Bipolar Transistors (IGBTs) in industrial applications.

    The key differentiator of the IX4352NE lies in its separate 9 A source and sink outputs, which enable tailored turn-on and turn-off timing while minimizing switching losses. An internal negative charge regulator also provides a user-selectable negative gate drive bias for improved dV/dt immunity and faster turn-off. With an operating voltage range (VDD – VSS) of up to 35 V, this driver offers exceptional flexibility and performance.

    One of the standout features of the IX4352NE is its internal negative charge pump regulator, which eliminates the need for an external auxiliary power supply or DC/DC converter. This feature is particularly valuable for turning off SiC MOSFETs, saving valuable space typically required for external logic level translator circuitry. The logic input’s compatibility with standard TTL or CMOS logic levels further enhances space-saving capabilities.

    The IX4352NE is ideally suited for driving SiC MOSFETs in various industrial applications such as:

    • on-board and off-board chargers,
    • Power Factor Correction (PFC),
    • DC/DC converters,
    • motor controllers, and
    • industrial power inverters.

    It’s superior performance makes it ideal for demanding power electronics applications in the electric vehicle, industrial, alternate energy, smart home, and building automation markets.

    With its comprehensive features, the IX4352NE simplifies circuit design and offers a higher level of integration. Built-in protection features such as desaturation detection (DESAT) with soft shutdown sink driver, Under Voltage Lockout (UVLO), and thermal shutdown (TSD) ensure the protection of the power device and the gate driver. The integrated open-drain FAULT output signals a fault condition to the microcontroller, enhancing safety and reliability. Furthermore, the IX4352NE saves valuable PCB space and increases circuit density, contributing to overall system efficiency.

    Notable improvements over the existing IX4351NE include:

    • A safe DESAT-initiated soft turn-off.
    • A thermal shutdown with high threshold accuracy.
    • The charge pump’s ability to operate during thermal shutdown.

    The new IX4352NE is pin-compatible, allowing for a seamless drop-in replacement in designs that specify the existing Littelfuse IX4351NE, which was released in 2020.

    “The IX4352NE extends our broad range of low-side gate drivers with a new 9 A sink/source driver, simplifying the gate drive circuitry needed for SiC MOSFETs,” commented June Zhang, Product Manager, Integrated Circuits Division (SBU) at Littelfuse. “Its various built-in protection features and integrated charge pump provide an adjustable negative gate drive voltage for improved dV/dt immunity and faster turn-off. As a result, it can be used to drive any SiC MOSFET or power IGBT, whether it is a Littelfuse device or any other similar component available on the market.”

    Original – Littelfuse

    Comments Off on Littelfuse Introduced a New Low-side SiC MOSFET and IGBT Gate Driver
  • Infineon Technologies to Deliver SiC Power Solutions for Xiaomi's Recently Announced SU7 EV

    Infineon Technologies to Deliver SiC Power Solutions for Xiaomi’s Recently Announced SU7 EV

    2 Min Read

    Infineon Technologies AG will provide silicon carbide (SiC) power modules HybridPACK™ Drive G2 CoolSiC™ and bare die products to Xiaomi EV for its recently announced SU7 until 2027. Infineon’s CoolSiC-based power modules allow for higher operating temperatures, resulting in best-in-class performance, driving dynamics and lifetime.

    Traction inverters based on the technology can, for example, further increase electric vehicle range. The HybridPACK Drive is Infineon’s market-leading power module family for electric vehicles, with almost 8.5 million units sold since 2017.

    Infineon provides two HybridPACK Drive G2 CoolSiC 1200 V modules for the Xiaomi SU7 Max. In addition, Infineon supplies Xiaomi EV with a broad range of products per car, including, for example, EiceDRIVER TM gate drivers and more than ten microcontrollers in various applications. The two companies also agreed to further cooperate on SiC automotive applications to fully utilize the benefits of Infineon’s SiC portfolio.

    Zhenyu Huang, Vice President of Xiaomi EV and General Manager of the Supply Chain Department, said: “Infineon is an important partner with leading technologies and resilient manufacturing capabilities in power semiconductors as well as a highly scalable microcontroller product portfolio. The cooperation between the two companies will not only help stabilize the supply of silicon carbide for Xiaomi EV, but also help us build a high-performance, safe and reliable luxury car with leading-edge features for our customers.”

    Peter Schiefer, President of Infineon’s Automotive division, said: “We are very pleased to work with dynamic players such as Xiaomi EV and provide them with silicon carbide products designed to enhance the performance of electric cars even further. As the leading partner to the automotive industry, we are well positioned with our broad product portfolio, system understanding and multi-site manufacturing base to shape the mobility of the future.”

    This collaboration contributes to Infineon’s position as the number one partner of the global automotive industry. According to the latest data from TechInsights, Infineon is the largest semiconductor supplier to the automotive industry. In addition to its number one position in automotive power semiconductors, Infineon also took the lead in the field of automotive microcontrollers last year.

    Original – Infineon Technologies

    Comments Off on Infineon Technologies to Deliver SiC Power Solutions for Xiaomi’s Recently Announced SU7 EV
  • University of Arkansas Tops Out Multi-User Silicon Carbide Research and Fabrication Facility

    University of Arkansas Tops Out Multi-User Silicon Carbide Research and Fabrication Facility

    2 Min Read

    The U of A celebrated a milestone with the topping-out of the Multi-User Silicon Carbide Research and Fabrication Facility.

    More than 100 students, faculty, state leaders and citizens were on hand to sign the steel topping-out beam and hear remarks from Kim Needy, dean of the College of Engineering, and Alan Mantooth, Distinguished Professor of electrical engineering. 

    The new semiconductor research and fabrication facility will produce microelectronic chips made with silicon carbide, a powerful semiconductor that outperforms basic silicon in several critical ways. The facility will enable the federal government – via national laboratories – businesses of all sizes and other universities to prototype with silicon carbide, a capability that does not presently exist elsewhere in the United States.

    Work at the research and fabrication facility will bridge the gap between traditional university research and the needs of private industry and will accelerate technological advancement by providing a single location where chips can go from developmental research to prototyping, testing and fabrication.

    The 21,760-square-foot facility, located next to the National Center for Reliable Electrical Power Transmission at the Arkansas Research and Technology Park, will address obstacles to U.S. competitiveness in the development of silicon-carbide electronics used in a wide range of electronic devices, circuits and other consumer applications. The building will feature approximately 8,000 square feet of clean rooms for fabrication and testing.

    Education and training within the facility will also accelerate workforce development, helping supply the next generation of engineers and technicians in semiconductor manufacturing.

    Original – University of Arkansas

    Comments Off on University of Arkansas Tops Out Multi-User Silicon Carbide Research and Fabrication Facility
  • SemiQ Launched a Known-Good-Die Screening Program

    SemiQ Launched a Known-Good-Die Screening Program

    2 Min Read

    SemiQ has begun a known-good-die (KGD) screening program that delivers high-quality, electrically sorted and optically inspected advanced SiC MOSFET technology ready for back-end processing and direct die attachment. 

    Known-good-die from SemiQ ensures consistent electrical parameters, enabling customers to rely on repeatable performance for high end-of-line yield when building equipment such as high-voltage supplies, traction inverters, and power conditioning systems. Uniform die parameters also simplify the connection of multiple devices in high-power modules. 

    “SiC is a powerful technology aiding the global drive for sustainability and our known-good-die SiC MOSFETs from SemiQ provide important performance advantages, such as near-constant junction capacitance, low insertion loss, and high isolation needed for high-frequency applications,” says Michael Tsang, VP, Product Engineering and Operations at SemiQ. “Thanks to this program, customers can receive quality-assured dies that will streamline and improve productivity and deliver predictable and repeatable performance in high-efficiency applications.”

    The KGD program is active now and applies to the complete portfolio of SemiQ’s QSiC™ 1200V SiC MOSFETs, ranging from 20mΩ to 80mΩ. This portfolio supports robust and efficient electrification across automotive, eMobility, renewable energy, industrial power, and other applications.

    KGD devices are supplied post-singulation on a choice of carrier media including blue tape, pre-cured UV tape, and tape and reel to ease integration with customers’ processes.  For more information, please visit SemiQ’s KGD page.

    Original – SemiQ

    Comments Off on SemiQ Launched a Known-Good-Die Screening Program
  • SiCrystal, a ROHM Group Company, and STMicroelectronics Expand a Multi-Year SiC Wafers Supply Agreement

    SiCrystal, a ROHM Group Company, and STMicroelectronics Expand a Multi-Year SiC Wafers Supply Agreement

    2 Min Read

    ROHM and STMicroelectronics announced the expansion of the existing multi-year, long-term 150mm silicon carbide (SiC) substrate wafers supply agreement with SiCrystal, a ROHM group company. The new multi-year agreement governs the supply of larger volumes of SiC substrate wafers manufactured in Nuremberg, Germany, for a minimum expected value of $230 million.

    Geoff West, EVP and Chief Procurement Officer, STMicroelectronics, commented “This expanded agreement with SiCrystal will bring additional volumes of 150mm SiC substrate wafers to support our devices manufacturing capacity ramp-up for automotive and industrial customers worldwide. It helps strengthen our supply chain resilience for future growth, with a balanced mix of in-house and commercial supply across regions”.

    “SiCrystal is a group company of ROHM, a leading company of SiC, and has been manufacturing SiC substrate wafers for many years. We are very pleased to extend this supply agreement with our longstanding customer ST. We will continue to support our partner to expand SiC business by ramping up 150mm SiC substrate wafer quantities continuously and by always providing reliable quality”.said Dr. Robert Eckstein, President and CEO of SiCrystal, a ROHM group company.

    Energy-efficient SiC power semiconductors enable electrification in the automotive and industrial sectors in a more sustainable way. By facilitating more efficient energy generation, distribution and storage, SiC supports the transition to cleaner mobility solutions, lower emissions industrial processes and a greener energy future, as well as more reliable power supplies for resource-intensive infrastructure like data centers dedicated to AI applications.

    Original – STMicroelectronics

    Comments Off on SiCrystal, a ROHM Group Company, and STMicroelectronics Expand a Multi-Year SiC Wafers Supply Agreement
  • Infineon Technologies will Power FOXESS Energy Storage Systems and String Inverters

    Infineon Technologies will Power FOXESS Energy Storage Systems and String Inverters

    3 Min Read

    Infineon Technologies AG supplies its power semiconductor devices to FOXESS, a fast-growing leader in the green energy industry and a manufacturer of inverters and energy storage systems. The two sides aim at promoting the development of green energy.

    Infineon will provide FOXESS with its CoolSiC™ MOSFETs 1200 V, which will be used with EiceDRIVER™ gate drivers for industrial energy storage applications. At the same time, FOXESS’ string PV inverters will use Infineon’s IGBT7 H7 1200 V power semiconductor devices.

    The global market for photovoltaic energy storage systems (PV-ES) has grown at a high speed in the last years. As competition in the PV-ES market accelerates, improving power density has become key to success, and how to improve efficiency and power density for energy storage applications has attracted much attention. Infineon’s CoolSiC MOSFET 1200 V and IGBT7 H7 1200 V series power semiconductor devices adopt the latest semiconductor technologies and design concepts that are tailored to industrial applications.

    Mr. Yu Daihui, Senior Vice President and Head of Industrial & Infrastructure of Infineon Technologies Greater China said, “As an industry leader in power semiconductors, we are proud to work closely with FOXESS. We will continue to drive decarbonization by enabling higher power density and more reliable systems for PV-ES applications.”

    Mr. Zhu Jingcheng, Chairman of FOXESS, said, “Thanks to the support of Infineon’s advanced components, FOXESS’ products have been significantly improved in terms of reliability and efficiency. This has been an important driving force for FOXESS’ growth. Infineon’s technical support and product quality have not only strengthened our competitiveness, but also expanded our presence in the market. We are confident about the future and look forward to further cooperation with Infineon to jointly promote the development of the industry and create greater value for our customers.”

    With a high power density, Infineon’s CoolSiC MOSFETs 1200 V can reduce losses by 50 percent and provide ~2 percent additional energy without increasing the battery size, which is especially beneficial for high-performance, lightweight, and compact energy storage solutions. FOXESS’ H3PRO 15 kW-30 kW energy storage series uses Infineon’s CoolSiC MOSFETs 1200 V for all models. Thanks to Infineon’s excellent performance, the H3PRO series has achieved an efficiency of up to 98.1 percent and excellent EMC performance; with superior performance and reliability, the H3PRO series has seen rapid sales growth in the global market.

    Infineon’s TRENCHSTOP IGBT7 H7 650 V / 1200 V series has lower losses and helps improve the overall efficiency and power density of inverters. In high-power inverter projects, high-current mold packaged discrete devices with current handling capability above 100 A can reduce the number of IGBTs in parallel and replace the IGBT module solution, further improving system reliability and reducing costs; in addition, the H7 series has become an industry benchmark for its high-quality performance and greater resistance to humidity.

    At present, FOXESS’ main industrial and commercial model, the R Series 75-110 kW, redefines the overall design of the 100 kW model by using IGBT7 H7 series discretes, and the efficiency of the whole machine can reach up to 98.6 percent. Thanks to the low power loss and high power density of the IGBT7 H7 series in discrete packages, technical problems such as current sharing in the paralleling process can be simplified and optimized.

    Every power device needs a driver, and the right driver can make the design a lot easier. Infineon offers more than 500 EiceDRIVER gate drivers with typical output currents of 0.1 A~18 A and comprehensive protection functions including fast short-circuit protection (DESAT), active Miller clamp, shoot-through protection, fault reporting, shutdown, and overcurrent protection, suitable for all power devices including CoolSiC and IGBTs.

    Original – Infineon Technologies

    Comments Off on Infineon Technologies will Power FOXESS Energy Storage Systems and String Inverters