-
LATEST NEWS / PROJECTS / SiC / TOP STORIES / WBG2 Min Read
ROHM and STMicroelectronics announced the expansion of the existing multi-year, long-term 150mm silicon carbide (SiC) substrate wafers supply agreement with SiCrystal, a ROHM group company. The new multi-year agreement governs the supply of larger volumes of SiC substrate wafers manufactured in Nuremberg, Germany, for a minimum expected value of $230 million.
Geoff West, EVP and Chief Procurement Officer, STMicroelectronics, commented “This expanded agreement with SiCrystal will bring additional volumes of 150mm SiC substrate wafers to support our devices manufacturing capacity ramp-up for automotive and industrial customers worldwide. It helps strengthen our supply chain resilience for future growth, with a balanced mix of in-house and commercial supply across regions”.
“SiCrystal is a group company of ROHM, a leading company of SiC, and has been manufacturing SiC substrate wafers for many years. We are very pleased to extend this supply agreement with our longstanding customer ST. We will continue to support our partner to expand SiC business by ramping up 150mm SiC substrate wafer quantities continuously and by always providing reliable quality”.said Dr. Robert Eckstein, President and CEO of SiCrystal, a ROHM group company.
Energy-efficient SiC power semiconductors enable electrification in the automotive and industrial sectors in a more sustainable way. By facilitating more efficient energy generation, distribution and storage, SiC supports the transition to cleaner mobility solutions, lower emissions industrial processes and a greener energy future, as well as more reliable power supplies for resource-intensive infrastructure like data centers dedicated to AI applications.
Original – STMicroelectronics
-
LATEST NEWS / TOP STORIES / WBG1 Min Read
Semilab Zrt. and Fraunhofer IISB announced the official kick-off of their strategic partnership.
Within their new joint lab, located at the IISB in Erlangen, the partners develop state-of-the-art metrology and inspection solutions for (ultra-) wide-bandgap semiconductor materials.
The goal is to take semiconductor metrology to a next level along the value chain, from base material to die. By bringing new features and tools from lab to market, new standards for SiC, GaN and other (U)WBG semiconductors will be set.Original – Fraunhofer IISB
-
LATEST NEWS / Si / SiC / TOP STORIES / WBG3 Min Read
Infineon Technologies AG supplies its power semiconductor devices to FOXESS, a fast-growing leader in the green energy industry and a manufacturer of inverters and energy storage systems. The two sides aim at promoting the development of green energy.
Infineon will provide FOXESS with its CoolSiC™ MOSFETs 1200 V, which will be used with EiceDRIVER™ gate drivers for industrial energy storage applications. At the same time, FOXESS’ string PV inverters will use Infineon’s IGBT7 H7 1200 V power semiconductor devices.
The global market for photovoltaic energy storage systems (PV-ES) has grown at a high speed in the last years. As competition in the PV-ES market accelerates, improving power density has become key to success, and how to improve efficiency and power density for energy storage applications has attracted much attention. Infineon’s CoolSiC MOSFET 1200 V and IGBT7 H7 1200 V series power semiconductor devices adopt the latest semiconductor technologies and design concepts that are tailored to industrial applications.
Mr. Yu Daihui, Senior Vice President and Head of Industrial & Infrastructure of Infineon Technologies Greater China said, “As an industry leader in power semiconductors, we are proud to work closely with FOXESS. We will continue to drive decarbonization by enabling higher power density and more reliable systems for PV-ES applications.”
Mr. Zhu Jingcheng, Chairman of FOXESS, said, “Thanks to the support of Infineon’s advanced components, FOXESS’ products have been significantly improved in terms of reliability and efficiency. This has been an important driving force for FOXESS’ growth. Infineon’s technical support and product quality have not only strengthened our competitiveness, but also expanded our presence in the market. We are confident about the future and look forward to further cooperation with Infineon to jointly promote the development of the industry and create greater value for our customers.”
With a high power density, Infineon’s CoolSiC MOSFETs 1200 V can reduce losses by 50 percent and provide ~2 percent additional energy without increasing the battery size, which is especially beneficial for high-performance, lightweight, and compact energy storage solutions. FOXESS’ H3PRO 15 kW-30 kW energy storage series uses Infineon’s CoolSiC MOSFETs 1200 V for all models. Thanks to Infineon’s excellent performance, the H3PRO series has achieved an efficiency of up to 98.1 percent and excellent EMC performance; with superior performance and reliability, the H3PRO series has seen rapid sales growth in the global market.
Infineon’s TRENCHSTOP IGBT7 H7 650 V / 1200 V series has lower losses and helps improve the overall efficiency and power density of inverters. In high-power inverter projects, high-current mold packaged discrete devices with current handling capability above 100 A can reduce the number of IGBTs in parallel and replace the IGBT module solution, further improving system reliability and reducing costs; in addition, the H7 series has become an industry benchmark for its high-quality performance and greater resistance to humidity.
At present, FOXESS’ main industrial and commercial model, the R Series 75-110 kW, redefines the overall design of the 100 kW model by using IGBT7 H7 series discretes, and the efficiency of the whole machine can reach up to 98.6 percent. Thanks to the low power loss and high power density of the IGBT7 H7 series in discrete packages, technical problems such as current sharing in the paralleling process can be simplified and optimized.
Every power device needs a driver, and the right driver can make the design a lot easier. Infineon offers more than 500 EiceDRIVER gate drivers with typical output currents of 0.1 A~18 A and comprehensive protection functions including fast short-circuit protection (DESAT), active Miller clamp, shoot-through protection, fault reporting, shutdown, and overcurrent protection, suitable for all power devices including CoolSiC and IGBTs.
Original – Infineon Technologies
-
LATEST NEWS / PRODUCT & TECHNOLOGY / Si / TOP STORIES2 Min Read
Toshiba Electronic Devices & Storage Corporation has launched two 150 V N-channel power MOSFET products that use the new generation process “U-MOSX-H series” and are suitable for switching power supplies for industrial equipment—used for such as data centers and communication base stations—and has expanded the lineup. The new products use the surface mount type SOP Advance(N) package and their drain-source On-resistance (max) is 11.1 mΩ for “TPH1100CQ5” and 14.1 mΩ for “TPH1400CQ5.”
The new products TPH1100CQ5 and TPH1400CQ5 have improved the reverse recovery characteristics that are critical in synchronous rectification applications. In the case of TPH1400CQ5, the reverse recovery charge is reduced by approximately 73 % and the reverse recovery time is approximately 45 % faster compared with Toshiba’s existing TPH1400CQH.
Used in synchronous rectification applications, TPH1400CQ5 reduces the power loss of switching power supplies and helps improve efficiency. The new products reduce the drain source spike voltage generated between the drain and source when MOSFET is switched, helping to lower EMI in switching power supplies.
Toshiba will expand its lineup of products and help to reduce power consumption for equipment.
Applications
- Switching power supplies (high efficiency AC-DC converters, high efficiency DC-DC converters, etc.)
- Motor control equipment (motor drives, etc.)
Features
- Low reverse recovery charge:
TPH1100CQ5 Qrr=32 nC (typ.) (-dIDR/dt=100 A/μs)
TPH1400CQ5 Qrr=27 nC (typ.) (-dIDR/dt=100 A/μs) - Fast reverse recovery time:
TPH1100CQ5 trr=38 ns (typ.) (-dIDR/dt=100 A/μs)
TPH1400CQ5 trr=36 ns (typ.) (-dIDR/dt=100 A/μs) - High channel temperature rating: Tch (max)=175 °C
Original – Toshiba
-
LATEST NEWS / PRODUCT & TECHNOLOGY / Si / SiC / TOP STORIES3 Min Read
The aviation industry’s requirements for the latest, most efficient and lowest-emission aircraft is propelled by an overarching goal towards sustainability and decarbonization. To satisfy these goals, aviation power systems developers are transitioning to electric actuation systems as the trend towards More Electric Aircraft (MEA) continues to grow.
To provide the aviation industry with a comprehensive electric actuation solution, Microchip Technology announced a new integrated actuation power solution that combines companion gate driver boards with the expansive Hybrid Power Drive (HPD) modules in silicon carbide or silicon technology with a power range of 5 kVA to 20 kVA.
The new integrated actuation power solution maintains the same footprint regardless of the power output. The companion gate driver boards are designed to be integrated with Microchip’s HPD modules to provide an all-in-one motor drive solution for the electrification of systems such as flight controls, braking and landing gear. Microchip’s power solutions are designed to scale based on the requirements of the end application, from smaller actuation systems for drones to high-power actuation systems for Electric Vertical Take-Off and Landing (eVTOL) aircraft, MEA and all-electric aircraft.
“We developed the companion gate driver boards to be used with our existing HPD modules to bring to market a plug-and-play power solution for MEA,” said Leon Gross, vice president of Microchip’s discrete product group. “With this solution, customers no longer need to design and develop their own drive circuitry, which can reduce design time, resources and cost.”
These high-reliability devices are tested to conditions outlined in DO-160, “Environmental Conditions and Test Procedures for Airborne Equipment.” There are multiple protection features including shoot-through detection, short circuit protection, desaturation protection, Under Voltage Lock Out (UVLO) and active miller clamping.
The gate driver boards are designed to be driven with external PWM signals based on Low Voltage Differential Signaling (LVDS) compliant with TIA/EIA-644 for low Electromagnetic Interference (EMI) and good noise immunity. The gate driver board provides differential outputs for telemetry signals like DC bus current, phase current and solenoid current by taking feedback from shunts present in the HPD module and DC bus voltage. It also provides direct output of two PT1000 temperature sensors available in the HPD power module.
The companion gate driver boards are low-weight, low-profile and compact solutions to optimize size and power efficiency of actuation systems. The gate drivers are designed to operate throughout the temperature range of −55°C to +110°C, which is critical for aviation applications that are often exposed to harsh environments.
The isolated companion gate driver boards only require a single 15V DC input for the control and drive circuit; additional voltages needed can be generated on the card. This significantly reduces the number of system components and simplifies system cabling.
Microchip provides comprehensive solutions for MEA by integrating power products with FPGAs, microcontrollers, security, memory and timing. Microchip’s solutions are designed to help customers speed up their development, reduce costs and get to market faster.
Original – Microchip Technology
-
LATEST NEWS / PROJECTS / Si / TOP STORIES2 Min Read
Renesas Electronics Corporation announced that it has started operations at its Kofu Factory, located in Kai City, Yamanashi Prefecture, Japan. Renesas aims to boost its production capacity of power semiconductors in anticipation of the growing demand in electric vehicles (EVs). To celebrate this milestone, Renesas held an opening ceremony on April 11 with local government officials and partner companies in attendance.
The Kofu Factory previously operated both 150mm and 200mm wafer fabrication lines under Renesas Semiconductor Manufacturing Co., Ltd, a wholly owned subsidiary of Renesas, but ceased operations in October 2014. Renesas made the decision to re-open the factory in May 2022 as a 300-mm wafer fab to support the growing demand for power semiconductors, which is propelled by the industry-wide goal to realize a decarbonized society.
Renesas conducted a 90-billion-yen worth investment in 2022 and has now started operations. The factory will start mass production of IGBTs and other products in 2025, doubling Renesas’ current production capacity for power semiconductors.
“We are proud to announce a remarkable achievement of the Kofu Factory. After its closure in 2014, the Kofu Factory has gone through a transformation and emerged as a dedicated 300-mm wafer fab for power semiconductors, exactly a decade later,” said Hidetoshi Shibata, President and CEO of Renesas.
“We extend our heartfelt thanks to the local governments of Yamanashi Prefecture, Kai City and Showa Town as well as the plant construction companies, equipment vendors, outsourcing and other partner companies. The power semiconductors produced at the Kofu Factory will help maximize the effective use of electricity, which will be in significant demand as EVs and AI continue to proliferate and advance.”
Outline of the Kofu Factory:
- Official Name: Kofu Factory, Renesas Semiconductor Manufacturing Co., Ltd.
- Address: 4617 Nishiyahata, Kai City, Yamanashi Prefecture, Japan
- Date Opened: April 1, 2024
- Size of Clean Room: up to 18,000 square meters
- Products to be Manufactured: IGBTs, Power MOSFETs and other power products
Original – Renesas Electronics
-
LATEST NEWS / PRODUCT & TECHNOLOGY / TOP STORIES2 Min Read
Toshiba Electronic Devices & Storage Corporation has launched a press pack IEGT “ST1500GXH35A” with ratings of 4500 V/1500 A that employs newly developed trench-type IEGT chips for use in high-voltage converters such as DC power transmission systems and industrial motor controllers.
The newly developed IEGT chips reduce collector-emitter saturation-voltage and improve shutdown tolerance, short-circuit tolerance and high-temperature tolerance.
Therefore, compared with the existing product, the collector-emitter saturation voltage (VCE(sat)) of the new ST1500GXH35A has been reduced by approximately 26 % from 3.4 V to 2.5 V (typical). In addition, the new product features wide RBSOA by improving shutdown tolerance, and tests short-circuit tolerance at a measurement voltage of 3400 V.
Furthermore, the junction temperature rating (Tj) has been increased from 125 °C to 150 °C (maximum) by improving the high-temperature tolerance of the diode.
ST1500GXH35A helps to reduce the size and power consumption for high-voltage converters such as DC power transmissions, static VAR compensators, and industrial motor controllers.
Applications
- DC power transmissions
- Static VAR compensators
- Industrial motor controllers
Features
- Low-collector-emitter saturation: VCE(sat)=2.6 V (typ.) (VGE=15 V, IC=1500 A, Tj=150 °C)
- Expanded RBSOA (reinforced for 3400 V of test voltage), tested short-circuit tolerance
- Maximum junction temperature rating: Tj (max)=150 °C
Original – Toshiba
-
GaN / LATEST NEWS / PRODUCT & TECHNOLOGY / TOP STORIES / WBG2 Min Read
Teledyne e2v HiRel Electronics announced the release of the TDGM650LS60, the first product in its innovative new 650V power module family. This new module utilizes a Teledyne high voltage Gallium Nitride (GaN) transistor and integrates an isolated driver in one package.
Designed to serve as a load switch or solid-state switch, the TDGM650LS60 offers unparalleled performance and versatility. With the driver providing 5KV isolation and a GaN transistor boasting a minimum breakdown voltage of 650V, this module ensures robust and dependable operation in diverse environments.
One of the standout features of the TDGM650LS60 is its lightning-fast switching time coupled with the absence of moving parts. This unique combination not only enhances operational efficiency but also significantly elevates the reliability of the device. As a result, the TDGM650LS60 is ideally suited for high-reliability applications, including but not limited to Space, Avionics, and Military sectors.
“This launch marks a significant milestone in Teledyne’s commitment to innovation” said Mont Taylor, Vice President and Business Development Manager at Teledyne e2v HiRel. “The TDGM650LS60 represents the culmination of our dedication to pushing the boundaries of technology, offering our customers performance, reliability, and versatility in their applications.”
Original – Teledyne e2v HiRel Electronics
-
LATEST NEWS / PRODUCT & TECHNOLOGY / TOP STORIES / WBG3 Min Read
Novel Crystal Technology (NCT), a global leader in Gallium Oxide (Ga2O3) technology, has successfully grown the first 6-inch Ga2O3 single crystal using the advanced Vertical Bridgman (VB) technique. This achievement marks a significant step forward in NCT’s efforts to deliver larger, high-quality semiconductor wafers for Ga2O3-based power devices.
The VB technique offers several advantages over NCT’s existing Edge-defined Film-fed Growth (EFG) method. By growing the crystal in a cylindrical shape, VB significantly reduces costs associated with substrate cutting. Additionally, it allows for production of substrates in various crystalline orientations, unrestricted by limitations imposed by crystal anisotropy.
Furthermore, the controlled thermal environment of VB growth leads to superior crystal quality with minimal defects, compared to EFG. Finally, dopant uniformity within the substrate is expected to improve, aligning with industry standards for other semiconductors like silicon.
NCT carried out a comparative evaluation between VB and EFG crystals with National Institute of Advanced Industrial Science and Technology (AIST) revealed a dramatic improvement in crystal quality. Synchrotron radiation X-ray topography analysis confirmed minimal defects in the VB-grown crystal, compared to the high density of defects observed in the EFG-grown crystal. This clearly demonstrates the superiority of the VB technique for producing high-quality Ga2O3 substrates.
Ga2O3 is a promising material for power electronics due to its ability to significantly reduce power loss compared to commonly used Silicon Carbide (SiC) in high-voltage applications, like electric vehicles and renewable energy systems. Its wide bandgap characteristics hold immense potential for energy conservation and CO2 emission reduction.
Established in 2015, NCT manufactures 2-inch and 100 mm gallium oxide (Ga2O3) substrates and epi-wafers for power devices. These are commercially available and used by universities, institutes, and power device companies worldwide. NCT currently supplies thousands of these substrates annually to support research and development efforts.
NCT is actively developing larger substrates such as 6-inch. Beyond substrates, NCT has a vision for broader Ga2O3 device production. They are already offering samples of their first Ga2O3 Schottky Barrier Diode, with qualification tests expected to be completed in September 2024.
The development of the Vertical Bridgman growth technique for Ga2O3 single crystals was initiated by Shinshu University, successfully achieving growth of 2-inch and 4-inch crystals. NCT acquired and extended their techniques to enable larger diameter crystal development. This research and development program was partially funded by the Adaptable and Seamless Technology Transfer Program through Target Driven R&D (A-STEP) of the Japan Science and Technology Agency (JST).
Original – Novel Crystal Technology
-
LATEST NEWS / PROJECTS / SiC / TOP STORIES / WBG3 Min Read
Wolfspeed, Inc. hosted Senator Thom Tillis (R-NC) and other local officials, community partners, and employees at a ceremony to celebrate the topping out of construction at the $5 billion John Palmour Manufacturing Center for Silicon Carbide. Located in Chatham County, North Carolina, the JP will produce 200mm silicon carbide wafers, significantly expanding Wolfspeed’s materials capacity, and meet the demand for next generation semiconductors critical to the energy transition and AI.
“We are excited to mark this critical milestone alongside our hard-working team, loyal customers, community partners, and ardent supporters like Senator Thom Tillis,” said Wolfspeed President and CEO, Gregg Lowe.
“This facility is a testament to Wolfspeed’s commitment to our local community and domestic workforce, furthering our position as the global leader in silicon carbide production. The JP will help maintain America’s lead in energy innovation, and unlock significant benefits for our local community by growing the state’s economy by more than $17.5 billion over the next two decades and creating 1,800 good-paying jobs by 2030.”
“Wolfspeed’s $5 billion investment in Chatham County is another example of why North Carolina is the best state in the country to do business,” said Senator Tillis. “I was proud to vote in favor of the CHIPS and Science Act, which provides critical support for domestic semiconductor manufacturing, and I applaud Wolfspeed’s commitment to developing technology here in North Carolina that supports our national security and economic interests.”
The JP represents a total investment of $5 billion, complemented by public and private support, to help accelerate the transition from silicon to silicon carbide and ramp up supply of this material recently deemed as critical to the energy transition by the U.S. Department of Energy. By the end of 2024, phase one of construction is expected to be completed on the 445-acre site.
The ramp of the JP will support recently signed customer agreements with Renesas, Infineon, and additional companies, while driving meaningful progress towards Wolfspeed’s long-term growth strategy. The JP will primarily produce 200mm silicon carbide wafers, which are 1.7x larger than 150mm wafers, translating to more efficient wafers and ultimately, lower costs. The JP underpins Wolfspeed’s vision of accelerating the adoption of silicon carbide semiconductors across a wide array of end-markets and unlocking a new era of energy efficiency.
Wolfspeed currently produces more than 60% of the world’s silicon carbide materials at its Durham, N.C. headquarters, and is engaged in a $6.5 billion capacity expansion effort to dramatically increase production.
Original – Wolfspeed