• SemiQ Expands Its Portfolio of QSiC™ Silicon Carbide Modules with a Family of 1200V Modules in SOT-227 Package

    SemiQ Expands Its Portfolio of QSiC™ Silicon Carbide Modules with a Family of 1200V Modules in SOT-227 Package

    2 Min Read

    SemiQ announced that it has expanded its portfolio of QSiC™ Silicon Carbide modules with the launch of a family of 1200V MOSFETs that pairs with or without 1200V SiC Schottky Diodes in a SOT-227 package.

    Crafted from high-performance ceramics and rigorously engineered to function with unwavering reliability in challenging conditions, the newly introduced SemiQ SiC modules achieve remarkably high performance. This enhanced performance empowers higher power densities and more streamlined design configurations.

    The QSiC™ modules feature high breakdown voltage (> 1400 V), high-temperature operation (Tj = 175 °C), and low Rds(On) shift over the full operating temperature range while providing industry-leading gate oxide stability and gate oxide lifetime, avalanche (UIS) ruggedness, and extended short-circuit withstand times.

    Target markets for the new QSiC™ modules with our existing SOT-227 SiC SBD modules include EV charging, on-board chargers (OBCs), DC-DC converters, E-compressors, fuel cell converters, medical power supplies, energy storage systems, solar and wind energy systems, data center power supplies, UPS/PFC circuits, and other automotive and industrial power applications.

    All of the new QSiC™ modules are tested at wafer-level gate burn-in to provide high-quality gate oxide with stable gate threshold voltage. Besides the burn-in test, which helps to stabilize the extrinsic failure rate, stress tests such as gate stress, high-temperature reverse bias (HTRB) drain stress, and high humidity, high voltage, high temperature (H3TRB) to ensure requisite industrial grade quality levels.

    Dr. Timothy Han, President at SemiQ, said, “We are delighted with the customer input and needs for our new family of QSiC™ high-power modules and thank our SemiQ team who have worked tirelessly to build and qualify our latest QSiC™ modules.”

    SemiQ’s new 1200V SOT-227 modules are available in 20mΩ, 40mΩ, 80mΩ SiC MOSFET categories. A table with part numbers is shown below.

    Part NumbersCircuit ConfigurationRatings, PackagesRds(on), mΩ
    GCMX020B120S1-E1Single MOSFET w/o SBD1200V/113A, SOT-22720
    GCMS020B120S1-E1Single MOSFET w SBD1200V/113A, SOT-22720
    GCMX040B120S1-E1Single MOSFET w/o SBD1200V/57A, SOT-22740
    GCMS040B120S1-E1Single MOSFET w SBD1200V/57A, SOT-22740
    GCMX080B120S1-E1Single MOSFET w/o SBD1200V/30A, SOT-22780
    GCMS080B120S1-E1Single MOSFET w SBD1200V/30A, SOT-22780

    Original – SemiQ

    Comments Off on SemiQ Expands Its Portfolio of QSiC™ Silicon Carbide Modules with a Family of 1200V Modules in SOT-227 Package
  • VisIC Technologies Revolutionizes Automotive Power Electronics with V22TG D³GAN

    VisIC Technologies Revolutionizes Automotive Power Electronics with V22TG D³GAN

    1 Min Read

    VisIC Technologies announced that the samples of the V22TG D3GAN will be available in the first quarter of 2024. This early availability allows manufacturers to assess and experience the performance and benefits of the package firsthand, aiding in the rapid development of the next generation of systems.

    Key Features and Benefits:

    1. Advanced Leaded Top-Side Cooled Isolated.
    2. Automotive and High Voltage Capability.
    3. High Power Density and Low On-Resistance.
    4. Versatile and Easy to Implement.

    Dr. Tamara Baksht, CEO and Co-Founder: “This advanced power package not only offers exceptional performance and reliability but also provides the versatility and ease of implementation required for emerging automotive and industrial applications. We are confident that the V22TG D3GAN will empower manufacturers to accelerate the adoption of electric vehicles.”

    Original – VisIC Technologies

    Comments Off on VisIC Technologies Revolutionizes Automotive Power Electronics with V22TG D³GAN
  • Heraeus Acquires Stake in Zadient Technologies, Materials Supplier to SiC Semiconductor Industry

    Heraeus Acquires Stake in Zadient Technologies, Materials Supplier to SiC Semiconductor Industry

    2 Min Read

    The Hanau-based technology company Heraeus has acquired a significant stake in the start-up company Zadient. Heraeus, as a German high-tech materials player considers the market of SiC base material highly relevant and a suitable addition to its other operations.

    The French-German firm Zadient specializes in the production of silicon carbide source material. Silicon carbide is a wide band gap semiconductor material, which is currently gaining rapid traction in the semiconductor market. Its properties lend themselves to use in power semiconductors, which help to convert current and voltages.

    Its fundamental contribution is the dramatic increase in efficiency it provides over silicon by reducing the heat losses that occur while power passes through chips. Its ability to handle higher power densities with low losses allows for the transition from 400V to 800V battery systems in EVs which significantly shortens their charging time and increases their range. SiC based electronics are also smaller and lighter, which also contributes to increased range.

    These properties have lead to the rapid adoption of SiC in applications ranging from the main inverters and on-board chargers in EVs to wind and solar power inverters, battery storage systems and even airplane power management modules. The breadth of these few examples is already an indication of the significant role SiC will play in the mobility and energy transition.

    Through the partnership, Heraeus intends to accelerate the company’s growth and support Zadient’s innovative approach with its own know-how.

    “Heraeus recognizes the potential of the SiC market and considers it to be highly relevant for high-tech applications. By acquiring a stake in Zadient, we can jointly offer our customers even better solutions” said Steffen Metzger, member of the Heraeus Group Management Committee. “We are very happy that we found a way to accelerate growth in the SiC market by combining the innovative ideas of the materials start-up Zadient with the manufacturing and technical expertise of the Heraeus Group.”

    “We are very excited to be partnering with an industry leader like Heraeus,” noted Zadient CEO Kagan Ceran.  “The expertise that Heraeus has in the industrial scale production of advanced materials, both in its home market of Germany and abroad, offers us unique synergies as we strive to realize our vision to be the world’s largest volume, highest purity producer of silicon carbide semiconductor materials.”

    Original – Heraeus

    Comments Off on Heraeus Acquires Stake in Zadient Technologies, Materials Supplier to SiC Semiconductor Industry
  • OKI Develops GaN Lifting offBonding Technology on QST Substrates of Shin-Etsu Chemical

    OKI Develops GaN Lifting off/Bonding Technology on QST Substrates of Shin-Etsu Chemical

    3 Min Read

    OKI, in collaboration with Shin-Etsu Chemical Co., Ltd., has announced the successful development of a technology that uses OKI’s CFB (crystal film bonding) technology to lift off only the GaN (gallium nitride) functional layer from Shin-Etsu Chemical’s uniquely improved QST® (Qromis Substrate Technology) substrate and bond it to a different material substrate.

    This technology enables the vertical conduction of GaN and is expected to contribute to the realization and commercialization of vertical GaN power devices capable of controlling large currents. The two companies will work further together to develop vertical GaN power devices that can be implemented in society by partnering with companies that manufacture these devices.

    GaN devices are attracting attention as next-generation devices that combine high device characteristics with low power consumption, such as power devices that require high breakdown voltages of 1800 volts or more, high-frequency devices for Beyond5G, and high-brightness micro-LED displays.

    In particular, vertical GaN power devices are expected to achieve significant demand growth as devices that can improve the basic performance of electric vehicles by endowing them with extended driving ranges and shortened power supply times. However, two major challenges hinder the social implementation of vertical GaN power devices: the diameter of the wafers must be increased to improve productivity and vertical conductivity must be realized to enable large current control.

    The coefficient of thermal expansion of Shin-Etsu Chemical’s QST substrate is equivalent to that of GaN. It can suppress warpage and cracking. This characteristic enables the crystal growth of thick GaN films with high breakdown voltages even on wafers larger than 8 inches, thereby enabling the production of wafers with larger diameters.

    On the other hand, OKI’s CFB technology can lift off only the GaN functional layer from the QST substrate while maintaining high device characteristics. The insulating buffer layer required for GaN crystal growth can be removed and bonded to various substrates via metal electrodes that allow ohmic contact.

    Bonding of these functional layers to a conductive substrate with high heat dissipation will enable both high heat dissipation and vertical conductivity. Through this, the combined technologies of Shin-Etsu Chemical and OKI solve the above two major challenges, paving the way for the social implementation of vertical GaN power devices.

    In the future, the two companies will contribute to the realization and widespread use of vertical GaN power devices through Shin-Etsu Chemical’s provision of QST substrates or GaN grown QST substrates to companies manufacturing GaN devices and OKI’s provision of CFB technology through partnering and licensing.

    Furthermore, OKI hopes to use CFB technology to provide added value to semiconductor devices that go beyond the framework of single materials and help realize the company’s key message of “Delivering OK! to your life”.

    Original – OKI

    Comments Off on OKI Develops GaN Lifting off/Bonding Technology on QST Substrates of Shin-Etsu Chemical
  • Mitsubishi Electric to Partner with Nexperia to Develop SiC Power Semiconductors

    Mitsubishi Electric to Partner with Nexperia to Develop SiC Power Semiconductors

    2 Min Read

    Mitsubishi Electric Corporation announced that it will enter into a strategic partnership with Nexperia B.V. to jointly develop silicon carbide (SiC) power semiconductors for the power electronics market. Mitsubishi Electric will leverage its wide-bandgap semiconductor technologies to develop and supply SiC MOSFET chips that Nexperia will use to develop SiC discrete devices.

    The electric vehicle market is expanding worldwide and is helping to drive the exponential growth of SiC power semiconductors, which offer lower energy loss, higher operating temperatures and faster switching speeds than conventional silicon power semiconductors. The high efficiency of SiC power semiconductors is expected to contribute significantly to global decarbonization and green transformation.

    Mitsubishi Electric has established leading positions in applications such as high-speed trains, high-voltage industrial applications and home appliances. The company launched the world’s first SiC power modules for air conditioners in 2010 and became the first supplier of an all-SiC power module for Shinkansen bullet trains in 2015. Mitsubishi Electric has accumulated superior expertise for the development and manufacture of SiC power modules, which are known for their advanced performance and high reliability.

    Going forward, Mitsubishi Electric expects to strengthen its partnership with Nexperia, a global leader with decades of experience in the design, manufacture, quality assurance and supply of diverse discrete devices. Nexperia’s devices are used in the automotive, industrial, mobile and consumer markets, contributing to decarbonization and a more sustainable future. Mitsubishi Electric will continue to improve the performance and quality of its SiC chips and focus on the development of power modules using proprietary module technologies.

    Mark Roeloffzen, SVP & General Manager Business Group Bipolar Discretes at Nexperia, said: “This mutually beneficial strategic partnership with Mitsubishi Electric represents a significant stride in Nexperia’s silicon carbide journey. Mitsubishi Electric has a strong track record as a supplier of technically proven SiC device and modules. Combined with Nexperia’s high-quality standards and expertise in discrete products and packaging, we will certainly generate positive synergies between both companies – ultimately enabling our customers to deliver highly energy efficient products in the industrial, automotive or consumer markets they serve.”

    Masayoshi Takemi, Executive Officer and Group President, Semiconductor & Device at Mitsubishi Electric, said: “Nexperia is a leading company in the industrial sector with proven technologies for high quality discrete semiconductors. We are delighted to enter into this co-development partnership that will leverage the semiconductor technologies of both companies.”

    Original – Mitsubishi Electric

    Comments Off on Mitsubishi Electric to Partner with Nexperia to Develop SiC Power Semiconductors
  • Nexperia to Sell Newport Wafer Fab to Vishay

    Nexperia to Sell Newport Wafer Fab to Vishay

    2 Min Read

    Vishay Intertechnology, Inc. and Nexperia B.V. announced that they have entered into an agreement that Vishay will acquire Nexperia’s wafer fabrication facility and operations located in Newport, South Wales, U.K. for $177million in cash. ATREG, Inc., the Seattle-based premier global firm for initiating, brokering, and executing the exchange of semiconductor manufacturing assets, served as Nexperia’s transaction advisors.

    Newport wafer fab, located on 28 acres, is an automotive certified, 200mm semiconductor wafer fab that supplies primarily automotive markets.  It is the largest semiconductor manufacturer in the U.K. 

    Toni Versluijs, Country Manager Nexperia UK, stated: “Nexperia would have preferred to continue the long-term strategy it implemented when it acquired the investment-starved fab in 2021 and provided for massive investments in equipment and personnel. However, these investment plans have been cut short by the unexpected and wrongful divestment order made by the UK Government in November 2022.

    The site needs clarity about its future to avoid further losses, and today’s announcement provides this. Of all options, this agreement with Vishay is the most viable one to secure the future of the site as Vishay – like Nexperia – has a solid customer base for the fab’s capabilities. For the site, Vishay’s commitment to further make the Newport wafer fab a success story is encouraging. Nexperia’s position with regards to the UK Government’s order remains unchanged.”

    The closing of Newport wafer fab transaction is subject to UK government review, the purchase rights of a third party, and customary closing conditions, and is expected to occur in the first quarter of 2024. 

    Nexperia’s priority always remains with our employees and our customers. Whilst we work on ensuring that all conditions to the sale are met soonest, we will continue to own and manage the site and support the employees as usual.

    Original – Nexperia

    Comments Off on Nexperia to Sell Newport Wafer Fab to Vishay
  • ROHM Completes Acquisition of Kunitomi Plant

    ROHM Completes Acquisition of Kunitomi Plant

    1 Min Read

    ROHM has completed the acquisition of the assets of Solar Frontier’s former Kunitomi Plant located in Japan, on November 7, 2023, based on its basic agreement signed with Solar Frontier.

    The Plant will be operated by LAPIS Semiconductor, a subsidiary of the ROHM Group, as its Miyazaki Plant No.2. It will become the Group’s main production site for SiC power devices and is aiming to start operation during 2024.

    The ROHM Group will continue to strengthen its production capacity in accordance with its Medium-Term Management Plan while keeping abreast of market conditions, and will also thoroughly enhance its BCM system to ensure a stable supply of products to customers.

    Original – ROHM

    Comments Off on ROHM Completes Acquisition of Kunitomi Plant
  • Siltronic Announced Production of the First Wafers in Singapore

    Siltronic Announced Production of the First Wafers in Singapore

    2 Min Read

    Siltronic announced the production of the first wafers in its latest state-of-the-art 300 mm fab in Singapore. The production marks an important milestone in the strategic capacity expansion of Siltronic’s global production network. 

    “It fills me with immense pride to see the production of the first wafers from the line. This is a decisive milestone in the history of Siltronic. I am delighted to see that the test wafer production has started slightly ahead of schedule. I would therefore like to congratulate and thank all the employees and suppliers involved for their contributions. We look forward to supplying our customers with leading-edge wafers from this new state-of-the-art fab,” said Dr. Michael Heckmeier, CEO of Siltronic AG.

    Despite many challenges, including the global pandemic and supply chain constraints, the construction of the new fab, which started in 2021, is on schedule and on budget. By the end of 2024, around 2 billion Euro will have been invested into this greenfield project. This will be followed by further investments on a smaller scale to further ramp the production. 

    The large-scale project covers an area of approximately 20 soccer fields. At peak construction times, more than 5,000 workers were on site for both construction activities and facilities installation. The fab is supported by approximately 5,500 piles which extend up to 60 meters into the ground. In total, 150,000 m³ of concrete and more than 35,000 tons of steel have been used.

    In the mid-term, the new fab is expected to be highly cost efficient due to the high degree of automation and deployment of digitalization, coupled with its strategic proximity to the existing 200- and 300 mm fabs in Singapore, which will lead to economies of scale and synergies. 

    The new fab will serve both medium and long-term demand growth in the semiconductor market, which is driven by megatrends such as digitalization, artificial intelligence, and electromobility. As originally planned, the production ramp phase will commence from the beginning of next year. 

    “The trust and support of our customers has been a key factor for this investment. In the ramp phase, sales from the new fab have been secured to a high degree by long-term agreements. Customers have also contributed significantly to the initial financing of the fab through prepayments,” added Claudia Schmitt, CFO of Siltronic AG.

    Original – Siltronic

    Comments Off on Siltronic Announced Production of the First Wafers in Singapore
  • All Wolfspeed WolfPACK SiC Power Modules Now Available with TIM

    All Wolfspeed WolfPACK SiC Power Modules Now Available with TIM

    1 Min Read

    The Wolfspeed WolfPACK power module family is designed to give engineers choice and flexibility when working on power electronics applications greater than 10 kW.

    In addition to half-bridge and six-pack topologies, WolfPACK modules are now available in full-bridge configurations—all with the option for pre-applied Honeywell™ PTM6000 Series TIM.

    Selecting pre-applied TIM can reduce assembly cost and complexity, while improving reliability and performance. Compared to standard grease solutions, WolfPACK modules with pre-applied TIM can reduce the junction temperature by 40°C under the same conditions or increase current capability by 60% due to the reduction in thermal resistance.

    All WolfPACK modules are designed to provide clean, reliable power for energy conversion systems. By leveraging more than 35 years of vertically integrated industry experience, Wolfspeed ensures that these modules offer low losses in a package that lends itself to fast design implementation, scalability, long term design support, and lower assembly overhead.

    Original – Wolfspeed

    Comments Off on All Wolfspeed WolfPACK SiC Power Modules Now Available with TIM
  • Hitachi to Transfer Hitachi Power Semiconductor Device shares to MinebeaMitsumi

    Hitachi to Transfer Hitachi Power Semiconductor Device shares to MinebeaMitsumi

    3 Min Read

    Hitachi, Ltd. has signed an agreement to transfer all shares of its wholly owned subsidiary, Hitachi Power Semiconductor Device, to MinebeaMitsumi Inc. for further growth and corporate value enhancement of Hitachi Power Semiconductor Device.

    Hitachi Power Semiconductor Device was established in October 2013 for the purpose of structuring an integrated system from design and manufacturing to sales in power semiconductor business by integrating the business of Hitachi and Hitachi Haramachi Electronics Co.

    Since then, Hitachi Power Semiconductor Device has been providing high value-added products utilizing high-voltage and low-loss technologies in the field of power semiconductors, which are key devices in the electrification and motorization of industry and social infrastructure, with “IGBT/SiC”, “High Voltage IC” and ” Diodes” as its three main product categories. Hitachi Power Semiconductor Device is focusing on IGBT/SiC products in the market areas where high growth is expected toward the realization of a decarbonized society, such as electric vehicles and inverters for wind power generators, in addition to railroad applications, utilizing the strength of the high durability and reliability cultivated in railroad applications.

    Many customers in Japan and overseas have adopted IGBT/SiC made by Hitachi Power Semiconductor Device. In the area of high-voltage ICs for industrial and home appliance applications, Hitachi Power Semiconductor Device is contributing to efficiency improvement and noise reduction in customers’ systems through motor control technology and software based on the knowledge it has gained from providing products for a wide range of fields. Furthermore, Hitachi Power Semiconductor Device provides diodes for automotive applications, which require high reliability, for a long period of time.

    Hitachi and Hitachi Power Semiconductor Device have held many discussions on measures to achieve further growth and enhance the corporate value of Hitachi Power Semiconductor Device. As a result of the discussion, we have reached a conclusion that the best way for Hitachi Power Semiconductor Device to continue its growth in the power semiconductor market, which is expected a high growth in the future, is to expand its production capacity and improve manufacturing efficiency under MinebeaMitsumi, which positions the analog semiconductor business as one of its core businesses.

    Under MinebeaMitsumi, with whom Hitachi Power Devices has been collaborating for many years, Hitachi Power Semiconductor Device will further enhance its strengths in high-voltage, low-loss technologies, expand its production capacity and improve manufacturing efficiency to provide higher value-added products in larger quantities to markets and customers, thereby aiming for further growth and corporate value enhancement.

    Hitachi will strive to further enhance its corporate value by leveraging the funds obtained from this share transfer for investment in growth of green and service business in the energy field.

    Original – Hitachi

    Comments Off on Hitachi to Transfer Hitachi Power Semiconductor Device shares to MinebeaMitsumi