-
LATEST NEWS / PROJECTS / Si / SiC / TOP STORIES / WBG2 Min Read
Infineon Technologies AG and Hyundai Motor Company and Kia Corporation have signed a multi-year supply agreement for silicon carbide (SiC) and silicon (Si) power semiconductors. Infineon will build and reserve manufacturing capacity to supply SiC as well as Si power modules and chips to Hyundai/Kia until 2030. Hyundai/Kia will support the capacity build-up and capacity reservation with financial contributions.
“Infineon stands as a valued strategic partner, boasting steadfast production capabilities and distinct technological prowess within the power semiconductor market,” said Heung Soo Kim, Executive Vice President and Head of Global Strategy Office (GSO) at Hyundai Motor Group. “This partnership not only empowers Hyundai Motor and Kia to stabilize its semiconductor supply but also positions us to solidify our leadership in the global EV market, underpinned by our competitive product lineups.”
“The future car will be clean, safe and smart and semiconductors are at the heart of this transformation. As a trusted partner, we are proud to advance our long-term partnership with Hyundai/Kia,” said Peter Schiefer, President of Infineon’s Automotive Division. “We contribute premium products of high quality, our system knowledge and application understanding combined with continued investments in manufacturing capacity to address the increasing demand for automotive power electronics.”
Infineon’s power semiconductors are key enablers for the transition to electromobility. This transition will lead to strong market growth for power semiconductors, especially those based on wide bandgap materials like SiC.
With the significant expansion of its Kulim fab, Infineon will build the world’s largest 200-millimeter SiC power fab and further strengthen its market-leading role as a high-quality, high-volume supplier to the automotive industry. In line with Infineon’s multi-site strategy, the Kulim facility will complement Infineon’s current manufacturing capacity in Villach, Austria, and further capacity expansions in Dresden, Germany.
Original – Infineon Technologies
-
LATEST NEWS / PROJECTS / TOP STORIES2 Min Read
Power semiconductors are electronic components which are key enablers to tackling major challenges of decarbonization and digitization on the path to an energy-wise society.
This IEC White Paper establishes the critical role that power semiconductors play in various aspects of modern industry and in society – from renewable power generation and transmission, electromobility, automated factories, energy-efficient data centres to smart cities and smart homes. It covers the various expected trends, opportunities and challenges surrounding the power semiconductors industry. Significant challenges are mentioned such as the need for change in industry practices when transitioning from linear to circular economies, and shortage of skilled personnel required for power semiconductor development.
The white paper stresses the need for strategic actions at the policy-making level to address these concerns and calls for stronger government commitment, policies, and funding to advance power semiconductor technologies and integration. It demands recognition of the crucial role played by power semiconductors in global decarbonization efforts.
It further highlights the pivotal role of standards in removing significant technical risks, increasing product quality and enabling faster market acceptance. According to the authors, IEC can play a leading role in promoting collaboration among stakeholders, aligning methodologies, and ensuring that international and national standardization bodies work closely with industry. Additionally, the white paper delivers recommendations to IEC stakeholders for collaborative structures and accelerating the development and adoption of standards.
In a first for the IEC Market Strategy Board’s White Paper series, the authors aim to inspire the engagement of young professionals in the area.
This white paper has been prepared by a project team representing a variety of organizations, working under the IEC Market Strategy Board (MSB). The project team included representatives from semiconductor network businesses, academia, equipment vendors from around the world, and IEC Young Professionals. Dr Kazuhiko Tsutsumi, Mitsubishi Electric Corporation and MSB Chair, served as the project sponsor. Dr Munaf Rahimo and Dr Iulian Nistor of MTAL GmbH served as coordinating authors and project partner.
Original – IEC
-
LATEST NEWS / PROJECTS / SiC / TOP STORIES / WBG5 Min Read
With support from the Innovation, Technology and Industry Bureau and the Office for Attracting Strategic Enterprises (OASES), the Hong Kong Science and Technology Parks Corporation (HKSTP) has signed a Memorandum of Understanding (MoU) with mainland China-based microelectronics enterprise J2 Semiconductor (Shanghai) Co. Ltd. (J2 Semiconductor), to set up a global research and development (R&D) Centre focusing on third-generation semiconductors at the Hong Kong Science Park, and to set up Hong Kong’s first Silicon Carbide (SiC) 8-inch advanced wafer fab.
This is a milestone moment in the government’s ambition to establish Hong Kong as a leading microelectronics hub in the region. This further promotes new industrialisation, a core for the Innovation, Technology and Industry Bureau which published its “Hong Kong Innovation and Technology Development Blueprint”, with a mission to develop strategically advanced manufacturing industries, such as microelectronics and semiconductors. As one of the world’s largest import and export markets for semiconductors, Hong Kong is at the heart of the Greater Bay Area which offers huge potential in becoming a key hub in the global semiconductor supply and value chain.
Professor Sun Dong, Secretary for Innovation, Technology and Industry, said “This collaboration between HKSTP and J2 Semiconductor to set up the Hong Kong’s first-ever large-scale semiconductor wafer fab, demonstrates the commitment of the HKSAR Government in taking the initiative to turn its ‘new industrialisation’ vision into action. J2 Semiconductor is proactively building up the capacity, quality and competitiveness of Hong Kong’s tech talent pool. The project will also drive the development of related industries, including semiconductor equipment manufacturers, material suppliers, testing service providers, to develop a complete ecosystem to reinforce Hong Kong’s position in the global semiconductor industry value chain.”
The collaboration between HKSTP and J2 Semiconductor is jointly supported by the Innovation, Technology and Industry Bureau and OASES with a view to sustain Hong Kong’s innovation and technology ecosystem and promote new industrialisation. The MoU was witnessed by Professor Sun Dong, Secretary of Innovation, Technology and Industry Bureau, Mr Philip Yung, Director-General of OASES, Ms Lillian Cheong, Under Secretary for Innovation, Technology and Industry, Dr Sunny Chai, Chairman of HKSTP and Dr Robert Tsu, Chairman of J2 Semiconductor. While Mr Albert Wong, CEO of HKSTP and Mr TY Chu, Co-CEO of J2 Semiconductor formally signed the MoU.
Dr Sunny Chai, Chairman of HKSTP said, “The plan of establishing J2 Semiconductor’s R&D Centre in the Science Park will promote Hong Kong’s R&D and advanced manufacturing capabilities of third-generation semiconductor devices. J2 Semiconductor brings the core technology and expertise to Hong Kong in advanced chip design, fabrication process and semiconductor product development, which is an important milestone in the development of microelectronics industry in Hong Kong. As one of Hong Kong’s flagship innovation and technology platforms, we provide high-quality infrastructure and facilities as well as a vast network of partners, which will continue to promote Hong Kong’s microelectronics R&D capabilities and strengthen Hong Kong’s position as an international I&T hub.”
Dr Robert Tsu, Chairman of J2 Semiconductor said, “I am very grateful for the level of attention and support from both the Innovation, Technology and Industry Bureau and HKSTP to this project. The MoU signing officially launches our third-generation semiconductor ‘SiC 8-inch advanced wafer fab’ project. J2 Semiconductor will invest an estimated HK$6.9 billion into the project, with plans to start volume production in the next couple of years, and reach annual production capacity of 240,000 SiC wafers in 2028, generating an annual production value of more than HK$11 billion and creating more than 700 job positions in Hong Kong. The project will assist in the early completion of the localisation of the new energy vehicle supply chain and drive the long-term development and prosperity of the semiconductor industry in Hong Kong.”
As a semiconductor chip design enterprise, J2 Semiconductor is committed to meeting the strong demand for domestically produced automotive chips from the China automotive industry. It mainly provides high-performance silicon carbide (SiC) devices with a focus on automotive, power conversion and communications. J2 Semiconductor’s superior SiC technology can be applied to relevant applications such as electric vehicles, as well as the related infrastructure such as charging stations, smart grids and energy storage.
HKSTP is committed to promoting Hong Kong’s new industrialisation mission and building a world-leading microelectronics ecosystem. HKSTP has established an extensive network of microelectronics hardware infrastructure, including Sensor Packaging and Integration Laboratory (Sensor Lab), Heterogenous Integration Lab (HI Lab) and the Hardware Lab, which can support the end-to-end process of design, prototyping and pilot production of chip-related equipment and systems as well as products. The Microelectronics Centre in Yuen Long Innovation Park is set to begin operation in 2024, supporting HKSTP’s infrastructure to accelerate microelectronics R&D pilot production, creating opportunities for upstream and downstream enterprises in the industry chain.
The microelectronics ecosystem of HKSTP is flourishing, with more than 200 microelectronics related companies. The establishment of the J2 Semiconductor facilities in Hong Kong will create greater level of synergy and knowledge exchange. Currently, five universities in Hong Kong are ranked among the top 100 universities in the world, with more than 100 university researchers engaged in microelectronics research, and promote the R&D of third-generation semiconductors. In this year’s Budget Speech, the HKSAR Government announced its plan to establish a Microelectronics Research and Development Institute to strengthen collaboration with universities, R&D centres and companies in the industry, and further accelerate the “1 to N” translation of R&D outcomes and bolster industry development.
Original – HKSTP
-
LATEST NEWS / PROJECTS / SiC / TOP STORIES / WBG3 Min Read
Mitsubishi Electric Corporation has agreed with Coherent Corp. to invest USD 500 million in a new silicon carbide (SiC) business to be carved out from Coherent, aiming to expand its SiC power device business by strengthening vertical collaboration with Coherent, who has been a supplier of SiC substrates to Mitsubishi Electric.
The electric vehicle market is expanding worldwide and is one of several emerging applications driving the exponential growth of SiC power devices, which offer lower energy loss, higher operating temperatures and faster switching speeds than conventional silicon power devices. The high efficiency of SiC power devices is expected to contribute significantly to global decarbonization and green transformation.
Mitsubishi Electric has been a leader in SiC power modules for high-speed trains, high-voltage industrial applications, and home appliances for many years. The company made history by launching the world’s first SiC power modules for air conditioners in 2010, and became the first supplier of a full SiC power module for Shinkansen high-speed trains in 2015. Mitsubishi Electric has also accumulated extensive expertise by meeting market needs for advanced performance and high reliability by deploying superior processing, screening, etc. for the development and manufacture of SiC power modules.
Mitsubishi Electric has been procuring high-quality 150mm SiC substrates from Coherent for the production of SiC power modules for many years. In addition to developing high-quality 200mm SiC substrates with Coherent, Mitsubishi Electric plans to invest approximately 100 billion yen to construct a new 200mm SiC wafer plant in Kumamoto Prefecture, Japan beginning in 2026.
By further deepening its collaboration with Coherent through this investment, Mitsubishi Electric aims to stabilize its procurement of SiC substrates for SiC power modules, for which demand is forecasted to grow rapidly, and thereby expand its supply of reliable high-performance SiC power devices to meet rising global demand.
Dr. Masayoshi Takemi, Executive Officer, Group President, Semiconductor & Device of Mitsubishi Electric, said: “Demand for SiC power semiconductors is expected to grow exponentially as the global market for electric vehicles increases in line with the transition to a decarbonized world. To capitalize on this trend, we have decided to expand our SiC power semiconductor production capacity, including by constructing a 200mm wafer plant in the Shisui area of Kumamoto Prefecture. We are delighted to strengthen our partnership with Coherent by investing in this new SiC company, which will provide us with a stable supply of high-quality SiC substrates essential for our increased supply capacity.”
Original – Mitsubishi Electric
-
LATEST NEWS / PROJECTS / SiC / TOP STORIES / WBG3 Min Read
DENSO CORPORATION announced a minority investment of US$500 million in Silicon Carbide LLC, Coherent Corp.’s silicon carbide (SiC) business, which will be separated into an independent subsidiary. Silicon Carbide LLC, which was originally established by Coherent in April 2023, manufactures SiC wafers. This investment will ensure a long-term stable procurement of SiC wafers to enhance the competitiveness of our electrification components. With this equity investment, DENSO will hold 12.5% equity stake in Silicon Carbide LLC.
As vehicle electrification accelerates as part of the global effort to reduce CO2 emissions, semiconductor demand has also grown rapidly. SiC is a key material for devices that significantly contribute to reducing power loss, downsizing, and lightweighting of Battery Electric Vehicle (BEV) systems, owing to its superior performance in high-temperature, high-frequency and high-voltage environments compared to that of conventional silicon.
Through this investment in Silicon Carbide LLC, which has an excellent track record in SiC wafer quality and mass production capabilities, DENSO will secure a stable procurement of quality 150mm and 200mm SiC wafers. This will further strengthen the competitiveness of DENSO’s inverters, which drive and control motors of electric vehicles.
“We are very pleased to establish a strategic relationship with Coherent, which has a world-class track record in SiC wafer manufacturing. Through this investment, we will secure a stable procurement of SiC wafers, which are critical for BEVs, and contribute to the realization of a carbon-neutral society by promoting the widespread adoption of BEVs,” said Shinnosuke Hayashi, President & COO, Representative Member of the Board at DENSO.
Dr. Vincent D. Mattera, Jr., Chair and CEO at Coherent, said, “We are excited to expand our strategic relationships with DENSO to capitalize on the significant demand for silicon carbide. After a thorough review of strategic alternatives for our Silicon Carbide business, we determined that the creation of a separate subsidiary and the strategic investments from DENSO, a leader in SiC power devices and modules, is the best path forward to maximize shareholder value and position the Business for long-term growth.
The investments from our strategic partners will be used to accelerate our capacity expansion plans and help sustain our leadership position, while ensuring the development of a robust and scalable supply for the rapidly growing market for SiC-based power electronics, largely driven by the explosive growth of the global electric vehicle market.”
DENSO will continue to contribute to the realization of a carbon-neutral society by promoting the widespread adoption of electrified products in all regions around the world.
Original – DENSO
-
GaN / LATEST NEWS / PROJECTS / TOP STORIES / WBG2 Min Read
Supplier of semiconductor epiwafers, SweGaN, recently began the transformation from start-up to scale-up. AFRY is assisting SweGaN’s scale-up journey with a wide variety of services to build a new state-of-the-art production facility in Linköping. A rapidly growing global sector, semiconductors – are key component within electric vehicles, solar inverters, power supplies and more – all contributing towards a more sustainable society.
AFRY’s cyber security experts are guiding SweGan in securing its IP (Immaterial Properties) and trade secrets and ensuring customer integrity. Additionally, AFRY is providing a bouquet of expert professional services including IT, OT, ERP, CE marking, construction of the new production facility, server room construction, electrical, security, work environment, quality assurance, risk management and project management.
“Initially, we asked AFRY to support and secure our cyber security operations. After understanding AFRY’s wide range of competencies and services, we determined it would be highly favourable to bring all professional services for the new facility under one roof. Partnering with AFRY, we can now focus SweGaN resources on our growth and expansion goals,” says Henrik Tölander, COO SweGaN.
“I am very proud that SweGaN chose us for this project. The client saw the value of one supplier for all their professional service needs. As SweGaN’s full service provider, we can gain a comprehensive, holistic overview of their needs and offer a customer-tailored solution,” says Michael Blom, Section Manager at AFRY.
The opening of the semiconductor production facility will enable Sweden, and in extension Europe, to strengthen the European supply chain and compete against Taiwan, China, the U.S, South Korea and Japan – currently the main providers of semiconductors. Increased access to robust semiconductor offerings in Europe will make it easier to develop and produce electric vehicles, solar inverters, and power supplies in Europe, while also reducing dependency on competing countries.
Original – AFRY
-
LATEST NEWS / PROJECTS / Si / TOP STORIES2 Min Read
Key Foundry signed a long-term supply agreement with Vishay Intertechnology Inc. for multiple power MOSFET products.
Power MOSFETs are the typical power discrete device, characterized by low loss, high-speed switching, and high reliability during high-voltage, high-current operation, which are commonly used in almost every electronic device.
According to a market research firm OMDIA, the power discrete market is expected to grow at a CAGR of 6% from $21.2 billion in 2022, reaching a $28.4 billion market in 2027. Vishay is one of the global leading companies in the power discrete market, and its power semiconductors are widely applied to automotive DC-DC converters, battery management systems, HVAC (Heating, Ventilating, and Air Conditioning) control, LED lighting, as well as consumer and industrial products such as TVs, refrigerators, washing machines, and VR/AR.
Key Foundry and Vishay have signed this long-term foundry service agreement for multiple power MOSFET products, with a plan to start mass production in 2024. In addition, both parties have begun discussions for other future product development.
With this agreement, Vishay secures a reliable source of foundry services for MOSFET production, while Key Foundry engages with a large customer for automotive power discrete, which will increase its share of automotive semiconductor sales in the long term.
“With this agreement we are taking another step forward in our plan to expand capacity, both internally and externally. In particular, it will help us alleviate our current MOSFET supply constraints especially for our automotive and industrial customers,” said Joel Smejkal, President and CEO of Vishay. “In evaluating foundry partners, we decided to engage with Key Foundry because of its foundry’s capabilities and proactive response, and we look forward to the synergies we can achieve through cooperation with Key Foundry.”
“We are pleased to collaborate with Vishay, a leading automotive power semiconductor company,” said Derek D. Lee, CEO of Key Foundry. “Key Foundry will continue to improve process technologies as well as strengthen capabilities in marketing, quality, and production to expand supply of automotive semiconductors and grow into a leading specialty foundry.”
Original – Key Foundry
-
LATEST NEWS / PROJECTS / SiC / TOP STORIES / WBG2 Min Read
Revasum, Inc. announced a strategic partnership with SGSS, a global leader in high-performance materials and innovative solutions. This partnership aims to revolutionize the semiconductor industry by developing a cutting-edge line of grinding wheels specifically designed for Silicon Carbide (SiC) wafers.
Silicon Carbide is a critical material in the production of power devices and has gained significant prominence in the semiconductor industry due to its exceptional properties. The demand for SiC wafers has been steadily growing, and achieving the highest quality wafers is paramount to meet the evolving needs of the market.
The partnership between Revasum and SGSS represents a collaboration between two industry giants with a shared commitment to innovation and excellence. By combining Revasum’s expertise in semiconductor manufacturing equipment with SGSS’s cutting-edge abrasive materials, this alliance seeks to develop a new generation of surface finishing solutions that will set new standards for precision, efficiency, and surface quality in SiC wafer production with sustainability and environmental responsibility at the core of our collaboration.
This partnership holds great promise for the semiconductor industry, paving the way for enhanced SiC wafer production processes that will contribute to the advancement of power electronics, electric vehicles, renewable energy, and various other technology sectors.
Mr. Scott Jewler, CEO of Revasum, Inc., commented on the partnership, saying, “We are excited to join forces with Saint-Gobain Surface Solutions, a renowned leader in materials science and innovation. This partnership will enable us to provide our customers with cutting-edge tools and solutions to address the increasing demand for high-quality Silicon Carbide wafers.”
Mr. Jean-Claude Lasserre, CEO Saint-Gobain Surface Solutions stated, “Our collaboration with Revasum exemplifies our commitment to delivering high-performance materials and solutions that push the boundaries of what is possible. Together, we will unlock new levels of precision and efficiency in Silicon Carbide wafer grinding with highest levels of sustainable products and solutions.”
Both Revasum, Inc. and SGSS are eager to embark on this journey of innovation and look forward to delivering groundbreaking solutions that will shape the future of Silicon Carbide wafer manufacturing.
Original – Revasum
-
LATEST NEWS / PRODUCT & TECHNOLOGY / SiC / TOP STORIES / WBG2 Min Read
Nexperia has entered into partnership with KYOCERA AVX Components (Salzburg) GmbH to jointly produce a new 650 V, 20 A silicon carbide (SiC) rectifier module for high frequency power applications ranging from 3 kW to 11 kW power stack designs, aimed at application like industrial power supplies, EV charging stations, and on-board chargers. This release will represent a further deepening of the existing, long-lasting partnership between the two companies.
Space-saving and weight reduction are the key requirements for manufacturers of the next generation power applications. The compact footprint of this new SiC rectifier module will help to maximize power density, thereby reducing the amount of required board space and lowering the overall system cost.
Thermal performance is optimized using a combination of top-side cooling (TSC) and an integrated negative temperature coefficient (NTC) sensor which monitors the device temperature and provides real time feedback for device or system level prognosis and diagnosis. This rectifier module has a low inductance package to enable high frequency operation and it has been qualified to operate with a junction temperature of up to 175 °C.
“This collaboration between Nexperia and KYOCERA AVX combines cutting edge silicon carbide semiconductors with state-of-the-art module packaging and will allow Nexperia to better serve the market demand for power electronic products which offer exceptionally high levels of power density,” according to Katrin Feurle, Senior Director of the Product Group SiC at Nexperia. “The release of this rectifier module will represent the first step in what is envisaged as a long-term SiC partnership between Nexperia and KYOCERA AVX”.
Thomas Rinschede, Deputy Vice President Sensing and Control Division at KYOCERA AVX Components Sensing and Control Division, comments: “We are delighted to further extend our successful partnership with Nexperia into the production of silicon carbide modules for power electronics applications. Nexperia’s manufacturing expertise combined with KYOCERA module know-how make a compelling offering for customers looking to achieve higher power densities using wide bandgap semiconductor technology.”
Nexperia expects samples of the new SiC rectifier modules to be available in the first quarter of 2024.
Original – Nexperia
-
LATEST NEWS / PROJECTS / SiC / TOP STORIES / WBG5 Min Read
Hon’ble Union Minister of State for Electronics and Information Technology, Shri Rajeev Chandrasekhar, virtually inaugurated the new Surface Mount Semiconductor Packaging Line, at Continental Device India Private Limited’s (CDIL) Mohali plant today. With the new versatile SMA and SMB package line, via the Government of India’s SPECS, CDIL becomes India’s first Silicon Carbide components manufacturer, scaled to make auto-grade devices, including Silicon Carbide MOSFETs, Silicon Carbide Schottky Diodes, Rectifiers, Zeners and TVS Diodes among others for the global as well as the domestic market. The expansion of assembly lines will increase CDIL’s total capacity at the facility to 600 million units annually.
The new line inauguration was also attended by Shri Tejveer Singh, IAS, Principal Secretary, IT, Government of Punjab, and Shri Amitesh Kumar Sinha, IRAS, Joint Secretary, MeitY and other senior dignitaries of MeitY and Invest Punjab.
With the impending surge in electric vehicles (EVs), power management devices and solar-powered panels, globally as well as in India, and their increased reliance on wide band gap electronics, CDIL identified and laid focus on Silicon Carbide (SiC) products.
SiC is an emerging technology that allows for much-improved efficiencies and power-handling capabilities, especially in high-power charging applications and battery management systems. CDIL spent R&D efforts pursuing SiC technology so as to build proficiency and assist in the world’s switch to Electric Vehicles.
Expressing his gratitude, Tejveer Singh, IAS, Principal Secretary, IT, Government of Punjab, said, “I am very very thankful to the CDIL team for this great effort in expanding the plant capacity and assembly line. And as CDIL and SCL sign the MoU, we can finally see Mohali becoming the chip-making hub of India. The Government has a vision to cultivate a dynamic semiconductor ecosystem in Mohali and therefore, the modernization of SCL could provide the sector the much needed impetus to put Mohali on the semiconductor manufacturing map of India.”
Speaking at the launch of the new assembly lines, Amitesh Kumar Sinha, IRAS, Joint Secretary, MeitY, said, “India’s Semiconductor mission is a key focus for both the Union and the State Governments, and there have been many developments in the sector. Yet, India still has much to catch up, with a projected surge in demand to approximately $110 billion by 2030. At MeitY, our objective is to modernise and commercialise SCL with focus on making it a R&D hub for developing the semiconductor ecosystem in the country.
It’s heartening to see CDIL taking the lead in Packaging of discrete semiconductor devices. CDIL has capability for R&D, Design, and Packaging. Earlier, they also had a fabrication facility. I hope CDIL will also consider setting up a discrete fab in the country by availing financial support under the Semicon India programme in future. As CDIL and SCL join hands for knowledge exchange, India can look forward to more indigenous chip manufacturing and packaging for India and the world in the upcoming future.”
CDIL has also established an advanced testing and reliability laboratory at the Mohali plant. The facility, a one-of-a-kind in India, is equipped to meticulously qualify the semiconductor products according to the stringent standards stipulated by the Automotive Electronics Council (AEC), ensuring they meet the rigorous demands of the automotive domain.
Commenting on the same, Prithvideep Singh, General Manager, CDIL said, “In line with our steadfast commitment to innovation and market diversification, CDIL Semiconductors has strategically positioned itself to meet the burgeoning demands of the automotive sector, both within India and on a global scale. Even though SiC devices are notoriously hard to manufacture at scale, we have spent effort and investment to master them. CDIL has been able to innovate on the brittleness and complexity around the production of SiC devices and has earned the resounding approval of large multinational customers in export markets.”
CDIL also signed an MoU with the Semi-Conductor Laboratory (SCL), a research institute in Mohali under MeitY, undertaking research and development in the field of semiconductor technology. Both parties will aim to establish a comprehensive framework wherein SCL’s specialized knowledge and wafer fabrication facilities are utilized to produce indigenized wafers for CDIL’s discrete semiconductor devices, using CDIL’s proprietary manufacturing processes. This collaborative effort is aimed as a significant stride towards advancing India’s semiconductor ambitions in fostering a stronger, self-reliant industry in the region.
Silicon Carbide (SiC) material boasts a significantly wider bandgap compared to traditional semiconductor materials like silicon. A wide bandgap (~3.26 eV for SiC) enables SiC devices to operate at higher temperatures and handle higher breakdown voltages. Consequently, SiC emerges as the optimal choice for the electric vehicle (EV), power management and solar sectors, as it allows semiconductor components to operate reliably in high temperatures, reducing the need for complex cooling systems.
The company has already initiated pilot production in August with 50 million units and promptly delivered its inaugural batch to customers in both the domestic and international markets. CDIL operates manufacturing facilities and a reliability lab in Mohali and Delhi, serving industries with a strong emphasis on the Automotive, Defence, and Aerospace sectors. With 59 years of legacy, a worldwide customer base, with many industry leaders as loyal customers spread throughout the world including China, Brazil, Germany, Hong Kong, Japan, Malaysia, Russia, Singapore, South Africa, South Korea, Turkey, USA and the UK.
Original – CDIL Semiconductors