-
LATEST NEWS / SiC / TOP STORIES / WBG4 Min Read
Aehr Test Systems announced it has received an initial customer order for a FOX-NP™ wafer level test and burn-in system, multiple WaferPak™ Contactors, and a FOX WaferPak Aligner to be used for engineering, qualification, and small lot production wafer level test and burn-in of their silicon carbide devices. The customer is a US-based multibillion-dollar semiconductor supplier serving several markets including automotive, computing, consumer, energy, industrial, and medical. The FOX-NP system, including the FOX WaferPak Aligner and initial WaferPaks are scheduled per the customer’s requested accelerated schedule to ship by the end of the calendar year 2023.
The FOX-NP system is configured with the new Bipolar Voltage Channel Module (BVCM) and Very High Voltage Channel Module (VHVCM) options that enable new advanced test and burn-in capabilities for silicon carbide power semiconductors using Aehr’s proprietary WaferPak full wafer Contactors. This new order highlights Aehr’s continued progression within the growing silicon carbide global power market.
Gayn Erickson, President and CEO of Aehr Test Systems, commented, “We are very excited that after conducting a detailed financial evaluation and multiple onsite visits to Aehr’s application lab, this new customer selected our FOX-P solution for engineering, qualification, and production of their silicon carbide power devices.
This evaluation included cost of ownership and system throughput, as well as device test, burn-in, and stabilization coverage. As their production capacity increases, they told us that they will quickly move to our FOX-XP multi-wafer test and burn-in systems for high-volume production. In addition to the automotive electric vehicle device opportunity, this customer in particular sees the enormous opportunity for silicon carbide power devices in industrial, solar, and other power applications.
“William Blair forecasts that in addition to the 4.5 million six-inch equivalent wafers that will be needed to meet the demand for electric vehicle related silicon carbide devices in 2030, another 2.8 million wafers are needed to address industrial, solar, electric trains, energy conversion and other applications in 2030. The interesting part of this is that most of these applications will be served with discrete MOSFETS in single die packages.
The cost of ownership of our solution proved to be more cost-effective and efficient for these devices than package part burn-in after the die are packaged in packages such as TO-247 or other discrete packages. This is a strong testimony of the advantage of wafer level burn-in as a better alternative to package part burn-in. This expands our silicon carbide test and burn-in market even more and this new customer helps expand Aehr’s presence in this market as our total addressable market (TAM) continues to grow.
“Aehr’s FOX-P systems and proprietary WaferPak full wafer Contactors enable our customers to do economical production volume test and reliability burn-in with processes such as High Temperature Gate Bias (HTGB) and High Temperature Reverse Bias (HTRB) very cost-effectively and ensure extremely high device quality. Our systems are typically used for long burn-in times lasting up to 24 hours or more.
We can do this for under $5.00 per hour per wafer capital depreciation cost while testing and burning-in up to several thousand devices at a time per wafer. This is also in a test system footprint that is up to 94% less than a typical test system on a standard semiconductor wafer prober, which in a precious clean room wafer facility is extremely important and saves a great deal of cost.
“The FOX family of compatible systems including the FOX-NP and FOX-XP multi-wafer test and burn-in systems and Aehr’s proprietary WaferPak full wafer contactors provide a uniquely cost-effective solution for burning in multiple wafers of devices at a single time to remove early life failures of silicon carbide devices, which is critical to meeting the initial quality and long-term reliability of the automotive, industrial, and electrification infrastructure industry needs.”
The FOX-XP and FOX-NP systems, available with multiple WaferPak Contactors (full wafer test) or multiple DiePakTM Carriers (singulated die/module test) configurations, are capable of functional test and burn-in/cycling of devices such as silicon carbide and gallium nitride power semiconductors, silicon photonics as well as other optical devices, 2D and 3D sensors, flash memories, magnetic sensors, microcontrollers, and other leading-edge ICs in either wafer form factor, before they are assembled into single or multi-die stacked packages, or in singulated die or module form factor.
Original – Aehr Test Systems
-
LATEST NEWS / SiC / TOP STORIES / WBG3 Min Read
AIXTRON SE supports GlobiTech Inc., one of the world’s largest silicon-epitaxy foundries, to expand their business into silicon carbide (SiC) epitaxy. AIXTRON’s new G10-SiC has enabled this global leader to quickly ramp its SiC epitaxy production into high volume to address the world’s increasing demand for power epi-wafers. GlobiTech’s selection of the G10-SiC means a future-proof investment based on dual wafer size configuration of 9×150 & 6×200 mm and the highest throughput per fab space available in the SiC industry today.
The G10-SiC was officially introduced in September 2022. And it has quickly become the tool of record for both 150mm and 200mm SiC device makers as well as foundries like GlobiTech, the wholly owned subsidiary of GlobalWafers Co., Ltd., which manufactures silicon carbide and silicon epitaxial wafers focused on power and electric vehicle (EV) market segments.
“When one of the largest manufacturers and foundries like GlobiTech diversifies its business, it is a clear signal of a long-lasting trend in the semiconductor industry: conventional silicon is being replaced by silicon carbide in an ever-increasing number of applications. And it makes us proud when a leading company such as GlobiTech chooses AIXTRON and our new G10-SiC as an enabler of its transition intothis emerging SiC market. It confirms our overall strategy and the prospects for further growth”, says Dr. Felix Grawert, CEO and President of AIXTRON SE.
GlobiTech, located in Sherman, TX, is already in high-volume production using both G5WW C and G10-SiC AIXTRON systems, with continued installation capacity over the next years.Modeled after the silicon business, GlobiTech supplies both SiC substrates and SiC epitaxy to the market.
“In AIXTRON, we have found a strong partner supporting us in our vision and plans to expand our business into the SiC epitaxy market – an important step as SiC technology is one of the fastest-growing semiconductor sectors. AIXTRON tools allow us to get the most wafers out of our current fab. And AIXTRON’s team understands what it takes to compete against silicon to grow this market while offering great customer support and service”, says Mark England, President of GlobalWafers.
The G10-SiC is the first SiC epitaxy tool on the market that truly enables high-volume production of SiC epi-wafers. Since the G10-SiC offers both 9×150 mm and 6×200 mm batch configurations, it is an instrumental tool for a market rapidly transitioning from 6-inch (150mm) to 8-inch (200 mm) wafer diameters. The new platform is built around AIXTRON’s proven automated wafer cassette-to-cassette loading solution with high-temperature wafer transfer.
Combined with high growth rate process capabilities, the G10-SiC provides best-in-class wafer throughput, an excellent epi wafer performance in terms of quality and uniformity, and the best throughput per square meter of fab space. All this leads to the lowest cost of ownership in the market. It is estimated that in 2023, the new G10-SiC will become AIXTRON’s top-selling product.
The wide-bandgap material SiC is set to become mainstream technology for efficient power electronics. Driven by the growing adoption of SiC-based power semiconductors within e-mobility solutions and the overall acceleration of the charging infrastructure, the global demand for SiC wafers is growing rapidly.And with its superior characteristics, SiC semiconductors offer higher energy efficiency than conventional power electronics based on silicon. Therefore, SiC significantly contributes to reducing the global CO2 footprint.
Original – AIXTRON
-
LATEST NEWS / PROJECTS / SiC / TOP STORIES / WBG2 Min Read
Semilab announced an agreement to form a long-term strategic partnership with Fraunhofer IISB. Within the framework of this cooperation, a demo lab will be opened with a strong focus on developing state-of-the-art metrology and inspection solutions for wide bandgap semiconductor materials.
Over the years, developments in compound semiconductor materials such as silicon carbide (SiC) have been receiving increased attention. SiC devices show great promise in the future of wide bandgap semiconductors due to their superior material properties. The silicon carbide market’s growth shows no sign of slowing down due to the expansion in the industrial and automotive sectors. Semilab believes in driving decarbonization by supporting the development of key SiC products and components.
Based in Budapest, Hungary, Semilab is a strategic metrology supplier and innovation partner of the leading wafer manufacturers, IC device makers in the More-than-Moore market segment. Semilab provides state-of-the-art metrology solutions for semiconductor device manufacturers, both in-line and R&D segments. The company is among the world leaders in non-contact CV metrology for SiC and its market share is growing for EPI thickness and resistivity monitoring.
The Fraunhofer IISB in Erlangen, Germany, specializes in wide-bandgap semiconductors and efficient power electronics. Here, device know-how merges with complex system development, especially for e-mobility and sustainable energy supply.
The institute bundles its activities in the two business units Power Electronic Systems and Semiconductors. In doing so, it comprehensively covers the entire value chain from basic materials, through semiconductor device, process and module technologies, to complete electronics and energy systems. As a unique center of excellence in Europe for the semiconductor material silicon carbide (SiC), the IISB is a pioneer in the development of highly efficient power electronics, even for extreme requirements. This spans from material, over process and to device development supported by providing innovative metrology solutions.
Considering the crucial role both players have in shaping of the European semiconductor scene, the strategic partnership between Semilab and Fraunhofer IISB will allow the utilization of their respective resources and global networks in order to develop new, innovative silicon carbide processes and metrologies.
Original – Semilab
-
LATEST NEWS / PROJECTS / Si / TOP STORIES2 Min Read
Siltronic AG officially inaugurated the extension to its crystal pulling hall at the Freiberg site. The new production area provides space for the latest generation of crystal pulling systems, which are used to produce silicon monocrystals for wafer production under cleanroom conditions. In total, several hundred million euros were invested in the construction and around 60 jobs were created.
“This investment is a clear commitment to our Saxon location. In addition, the modernization helps us to maintain our position as one of the world’s technology leaders and it strengthens our position as the only major Western wafer manufacturer”, said Dr. Michael Heckmeier, CEO of Siltronic AG, at the opening. The Freiberg site in Saxony is one of four production sites of the group, which manufactures in Germany, Singapore and the USA.
With a usable area of 20,000 square meters, the extension building is almost as large as three soccer fields. Here, man-sized silicon monocrystals are produced in a process that takes five to seven days. The so-called ingots have a diameter of around 300 millimeters and weigh several hundred kilograms. In a complex process under cleanroom conditions, they are processed into wafers – extremely thin slices of silicon. Siltronic’s customers use the wafers to manufacture microchips, which can be found in everyday items such as tablets, smartphones and electric cars, as well as wind turbines and aircrafts. The semiconductor industry is receiving tailwind from the megatrends of artificial intelligence, digitization and electromobility.
Siltronic has invested more than one billion euros at the site since acquiring Freiberger Elektronikwerkstoffe GmbH in 1995. “With our investments, we believe we are well prepared for the future, to be at the forefront in a challenging market environment,” Heckmeier explained. Currently around 1,000 people are employed at the site in Freiberg, Saxony.
Original – Siltronic
-
LATEST NEWS / PROJECTS / TOP STORIES2 Min Read
WT Microelectronics Co., Ltd. announced that it has entered into a definitive agreement to acquire 100% of the shares of Future Electronics Inc. (“Future Electronics”) for an enterprise value of US$3.8 billion in an all-cash transaction. The strategic transaction is anticipated to deliver long-term, sustainable value to all relevant stakeholders including customers, suppliers, employees, and shareholders through the combination of two highly complementary organizations.
Future Electronics, a Canadian-based leading global distributor of electronic components, generated revenues of US$2.9 billion, operating income of US$228 million, and net income of US$184 million for the six months ended on June 30, 2023. The privately-held company, with approximately 5,200 employees in 47 countries, provides customers with application engineering expertise and supply chain services covering a portfolio of electronics from industry leading suppliers.
“This is transformational for WT Microelectronics and Future Electronics and important for the electronic component ecosystem,” said Eric Cheng, Chairman and CEO of WT Microelectronics. “Future Electronics has an experienced and deep management team and a very talented employee base, and is highly complementary to WT Microelectronics in terms of product offerings, customer coverage, and global footprint.
Future’s management team, all of their employees worldwide, and all locations and distribution centers will continue to operate and add value to the organization. We are excited to invite Mr. Omar Baig to join WT Microelectronics’ Board of Directors post-closing and look forward to working with him and his immensely talented colleagues around the world to build together a best-in-class electronic components distributor.”
“We are excited to join WT Microelectronics and believe that this transaction will benefit all our stakeholders. Our two companies share a common culture, driven by a rich entrepreneurial spirit that will empower our talented employees globally”, said Omar Baig, President, CEO and Chairman of Future Electronics. “This combination is a great opportunity for WT Microelectronics and Future Electronics to jointly form a world-class industry leader, and allows us to continue our long-term strategic plan to offer the highest level of services to our customers, which we have been doing for the past 55 years.”
Original – WT Microelectronics
-
LATEST NEWS / PRODUCT & TECHNOLOGY / SiC / TOP STORIES / WBG3 Min Read
Vitesco Technologies is developing a power module which will be manufactured using transfer molding process. During this process the power electronics are sealed under a dielectric material that protects the components extremely well. The result is a very robust, cost effective and reliable electronic. The power module consists of three overmolded half-bridges and forms the core of an inverter system, which controls both the drive energy and the energy recovery (recuperation) in high-voltage electric vehicles.
Manufactured at the Nuremberg electronics plant, the power modules will be delivered to a large global car maker from mid-2025 onwards.
Vitesco Technologies has been adapting and utilizing transfer molding technology since 2020, first applying it to compact Transmission Control Units designed for full integration inside a gear box.
The overmold power modules now combine highly efficient state-of-the art silicon carbide (SiC) chip technology with overmolding to facilitate a particularly robust product with increased power density, lower cost and reduced weight.
These power modules are a good example of strategic approach of using the scalability and modularity of our power electronics to develop and manufacture submodules in addition to the complete electronics. Combined with extensive overmolding expertise, Vitesco can deliver an extremely robust product to our customers. This is yet another example of how the company successfully transfers proven technology to an electrification product.
- Thomas Stierle, member of the board and head of Vitesco Technologies’ Electrification Solutions division
Vitesco Technologies has extensive expertise in power electronics and is already on the market with its fourth generation. The newly developed overmold power module expands the company’s strategic portfolio.
A very deep system competence is necessary to ensure that a sub-module of this kind, which forms the core of the inverter, can be successfully integrated into the full system. Our degree of electronics modularity and scalability enables us to offer more flexibility in terms of customer-specific interfaces.
- Michael Horbel, head of product and platform management high voltage inverter at Vitesco Technologies
Vitesco Technologies will continue to use this strength to bring further electronic sub-modules to the market.
The lead plant for these modules is Vitesco Technologies’ Nuremberg site. With its existing competencies and experience, the plant offers a high degree of automation as well as the focus on electronics and e-mobility required for the power modules. This is a further step forward into the “Plant of the Future” concept, defined for the Nuremberg plant to maintain its international competitiveness.
Original – Vitesco Technologies
-
LATEST NEWS / PRODUCT & TECHNOLOGY / Si / TOP STORIES1 Min Read
Magnachip Semiconductor Corporation announced the launch of its 1200V and 650V Insulated Gate Bipolar Transistors (IGBTs), designed for the positive temperature coefficient (PTC) heaters of electric vehicles (EVs).
Built upon Magnachip’s cutting-edge Field Stop Trench technology, the newly introduced AMBQ40T120RFRTH (1200V) and AMBQ40T65PHRTH (650V) offer a minimum short-circuit withstand time of 10µs. This remarkable level of ruggedness enables PTC heaters to be protected from a permanent failure in the event of overcurrent conditions.
Furthermore, the thick and large heat sink of the TO-247 package allows these new IGBTs to excel in heat dissipation. Therefore, these IGBTs are well-suited for applications requiring high power and efficiency, such as both the upper and lower sides of power management integrated circuits of PTC heaters.
“Since early last year, Magnachip has released high-performance automotive power solutions that adhere to the stringent AEC-Q101 standards,” said YJ Kim, CEO of Magnachip. “Now that we have successfully released our first IGBT products for EVs, we will continue to expand our product lineup to meet the diverse needs of the EV market and cater to the demands of our valued customers.”
Original – Magnachip Semiconductor
-
LATEST NEWS / PROJECTS / TOP STORIES3 Min Read
A group of semiconductor companies in Flanders have come together to create Flanders Semiconductors, a new nonprofit organization representing the interests of the industry at local, European, and global levels. The organization is open to all qualifying companies, both in and outside of the Flanders region, that have semiconductor technology at the core of their business.
Flanders Semiconductors is a significant move for the Flemish semiconductor industry, which currently employs well over 3,000 people directly, has more than 50 companies with semiconductor as their core business, and over 100 companies defining, testing, and integrating advanced customized semiconductor devices or technologies.
Flanders Semiconductors covers the whole supply chain, including infrastructure, equipment, materials, processing, testing, and devices. The Flanders region also boasts world-class research facilities such as IMEC, universities, and institutes providing semiconductor R&D, education, and training. The objectives of Flanders Semiconductors are to increase the talent pool, share industry roadmaps, maintain a yearly business events calendar, and represent members’ interests at international levels. The organization will also market the region and its members internationally, to promote cooperation between members and to cooperate with similar organizations in Europe.
Flanders Semiconductors is led by President Lou Hermans, who has over three decades of industry expertise, along with a team of seasoned semiconductor professionals. Together with the dedicated management team, their mission is to foster collaboration, drive innovation, and catalyze growth within the semiconductor ecosystem, both in Flanders and on a global scale.
“We are thrilled to officially announce the launch of Flanders Semiconductors, poised to be(come) another important European hub for semiconductor innovation,” said Lou Hermans, President of Flanders Semiconductors. “Our founding members, including BelGan, Caeleste, Cochlear, easics, ICsense, NXP, Pharrowtech, Sofics, and Spectricity, have united to create a platform that champions the semiconductor industry’s interests at every level. I am deeply inspired and motivated by the drive, support, remarkable power and unity of the founding members. Our diverse community of present and future member companies, each bringing their unique solutions to the semiconductor industry, exemplifies the immense strength and boundless potential that collaboration holds.”
Flanders Semiconductors welcomes all qualifying companies with semiconductors as their main business and is open to associate memberships for universities, R&D organizations, and non-qualifying companies.
The grand unveiling of the Flanders Semiconductor association is set for September 13th in Leuven, Belgium and interested parties can join this special occasion. Registrations to secure a spot can be done at www.flanders-semiconductors.org
Original – Flanders Semiconductors
-
GaN / LATEST NEWS / PRODUCT & TECHNOLOGY / TOP STORIES / WBG4 Min Read
Navitas Semiconductor announced the world-wide launch of GaNSafe™, a new, high-performance wide bandgap power platform at a special customer, partner and press event in Taiwan. Navitas has optimized its 4th-generation gallium nitride technology for demanding, high-power applications in data centers, solar / energy storage and EV markets, where efficiency, power density and robust & reliable operation are critical.
At the worldwide launch event at the Marriot Taipei, Navitas’ David Carroll, Sr. VP Worldwide Sales, and Charles Bailley, Sr. Director Business Development will introduce Navitas and the new GaNSafe platform to an invited VIP audience of over 50 high-ranking customer attendees, plus industry partners and international media.
The new 4th-generation GaN power ICs are manufactured in Hsinchu, by long-term Navitas partner TSMC. Navitas is grateful to Dr. RY Su, Manager of GaN Power Technology at TSMC, who will make a special presentation on the future of GaN at the GaNSafe launch.
Navitas’ GaNFast™ power ICs integrate gallium nitride (GaN) power and drive, with control, sensing, and protection to enable faster charging, higher power density, and greater energy savings, with over 100,000,000 units shipped, and an industry-first 20-year warranty. Now, the new GaNSafe platformhas been engineered with additional, application-specific protection features, functions and new, high-power packaging to deliver enabling performance under grueling high-temperature, long-duration conditions.
The initial, high-power 650/800 V GaNSafe portfolio covers a range of RDS(ON) from 35 to 98 mΩ in a novel, robust, and cool-running surface-mount TOLL package, to address applications from 1,000 to 22,000 W. GaNSafe integrated features and functions include:
- Protected, regulated, integrated gate-drive control, with zero gate-source loop inductance for reliable high-speed 2 MHz switching capability to maximize application power density.
- High-speed short-circuit protection, with autonomous ‘detect and protect’ within 50 ns – 4x faster than competing discrete solutions.
- Electrostatic discharge (ESD) protection of 2 kV, compared to zero for discrete GaN transistors.
- 650 V continuous, and 800 V transient voltage capability to aid survival during extraordinary application conditions.
- Easy-to-use, complete, high-power, high-reliability, high-performance power IC with only 4 pins, to accelerate customer designs.
- Programmable turn-on and turn-off speeds (dV/dt) to simplify EMI regulatory requirements.
Unlike discrete GaN transistor designs, with voltage spikes, undershoot and specification breaches, GaNSafe delivers an efficient, predictable, reliable system. GaNSafe’s robust 4-pin TOLL package has achieved the tough IPC-9701 mechanical reliability standard, and delivers simple, strong, dependable performance as compared to multi-chip modules which require 3x as many connections, and have poor cooling capability.
Navitas’ market-specific system design centers offer complete platform designs with benchmark efficiency, density and system cost using GaNSafe products to accelerate customer time-to-revenue and maximize chance of first-time-right designs. These system platforms include complete design collateral with fully-tested hardware, embedded software, schematics, bill-of-materials, layout, simulation and hardware test results. Examples of system platforms enabled by GaNSafe technology include:
- Navitas’ CRPS185 data center power platform, that delivers a full 3,200 W of power in only 1U (40 mm) x 73.5mm x 185 mm (544 cc), achieving 5.9 W/cc, or almost 100 W/in3 power density. This is a 40% size reduction vs, the equivalent legacy silicon approach and reaches over 96.5% efficiency at 30% load, and over 96% stretching from 20% to 60% load, creating a ‘Titanium Plus’ benchmark.
- Navitas’ 6.6 kW 3-in-1 bi-directional EV on-board charger (OBC) with 3 kW DC-DC. This 96%+ efficient unit has over 50% higher power density, and with efficiency over 95%, delivers up to 16% energy savings as compared to competing solutions.
“Our original GaNFast and GaNSense technologies have set the industry standard for mobile charging, establishing the first market with high-volume, mainstream GaN adoption to displace silicon,” said Gene Sheridan, CEO and co-founder. “GaNSafe takes our technology to the next level, as the most protected, reliable and safe GaN devices in the industry, and now also targeting 1-22 kW power systems in AI-based data centers, EV, solar and energy storage systems. Customers can now achieve the full potential of GaN in these multi-billion dollar markets demanding the highest efficiency, density and reliability.”
The GaNSafe portfolio is available immediately to qualified customers with mass production expected to begin in Q4 2023. 40 customer projects are already in progress with GaNSafe in data center, solar, energy storage and EV applications, contributing to Navitas’ $1 billion customer pipeline.
Original – Navitas Semiconductor
-
GaN / LATEST NEWS / PRODUCT & TECHNOLOGY / TOP STORIES / WBG3 Min Read
Shin-Etsu Chemical Co., Ltd. has determined that QST® (Qromis Substrate Technology) substrate is an essential material for the social implementation of high-performance, energy-efficient GaN (gallium nitride) power devices, and the company will promote the development and launching on the market of these products.
Since QST® substrate is designed to have the same coefficient of thermal expansion (CTE) as GaN, it enables suppression of warpage and cracking of the GaN epitaxial layer and resultant large-diameter, high-quality thick GaN epitaxial growth. Taking advantage of these characteristics, it is expected to be applied to power devices and RF devices (5G and beyond 5G), which have been rapidly growing in recent years, as well as in such areas as MicroLED growth for MicroLED displays.
In addition to sales of QST® substrates, Shin-Etsu Chemical will also sell GaN grown QST® substrates upon customer request. We currently have a line-up of 6″ and 8″ diameter substrates, and we are working on 12″ diameter substrates. Since 2021, for each respective application for power devices, RF devices and LEDs, sample evaluation and device development are continuing with numerous customers in Japan and globally. Especially for power devices, continuous evaluation is underway for devices in the wide range of 650V to 1800V.
So far, Shin-Etsu Chemical has repeatedly made many improvements with regard to its QST® substrates. One example is the significant improvement in lowering defects originating from the bonding process, which has enabled the supply of high-quality QST® substrates. In addition, for the thicker GaN films that many of our customers have requested, we have promoted the provision of template substrates with optimized buffer layers, which enables our customers to realize stable epitaxial growth of more than 10 μm thickness. Furthermore, various successful results have been produced and reported on, including the achievement of thick-film GaN growth exceeding 20 μm using QST® substrates and the achievement of 1800V breakdown voltage in power devices.
Moreover, Shin-Etsu Chemical and Oki Electric Industry Co., Ltd. have jointly succeeded in developing a technology to exfoliate GaN from QST® substrates and bond it to substrates made of different materials using Crystal Film Bonding (CFB) technology. Until now, most GaN power devices have been lateral devices, but CFB technology takes advantage of the characteristics of QST® substrates to realize vertical power devices that can control large currents by exfoliating a thick layer of high-quality GaN from an insulating QST® substrate (see figure below).
To customers who manufacture GaN devices, Shin-Etsu Chemical will provide QST® substrates or GaN grown QST® substrates and Oki Electric Industry will provide its CFB technology through partnering or licensing. In this way, the two companies hope to contribute to the advancement of vertical power devices.
Based on these development results and also based on business situation inquiries from customers, Shin-Etsu Chemical will continue to increase production to meet customer demand.
Shin-Etsu Chemical will contribute to the realization of a sustainable society that can use energy efficiently by further promoting the social implementation of GaN devices that have characteristics that are absolutely essential for the future society.
Original – Shin-Etsu Chemical