• GE Scientists Demonstrate Ultra-High Temperature SiC MOSFET Electronics

    GE Scientists Demonstrate Ultra-High Temperature SiC MOSFET Electronics

    4 Min Read

    A team of scientists from GE Research have set a new record, demonstrating SiC MOSFETs (Metal–Oxide–Semiconductor Field-Effect Transistors) that can tolerate temperatures exceeding 800 degrees C. This at least 200 degrees C higher than previously known demonstrations of this technology and shows the potential of SiC MOSFETs to support future applications in extreme operating environments. It also defies what most electronics experts believed was achievable with these devices.

    As GE’s Aerospace business looks to continuously improve the state-of-the-art in aviation systems for its existing commercial and military customers and seeks to enable new applications in support of space exploration and hypersonic vehicles, building a portfolio of electronics that can function in extreme operating environments will be essential. For more than three decades, GE has built a world leading portfolio in SiC technology and sells an array of SiC-based electrical power products through the Aerospace business for aerospace, industrial and military applications.

    Emad Andarawis, a Principal Engineer in Microelectronics at GE Research, says achieving the high temperature threshold with SiC MOSFETs could open a whole new aperture of sensing, actuation and control applications for space exploration and hypersonic vehicles, stating, “We know that to break new barriers with space exploration and hypersonic travel, we will need robust, reliable electronics systems that can handle the extreme heat and operating environments. We believe that we have set a record, demonstrating 800 degree C SiC MOSFETS that represents a key milestone toward these mission critical goals.”

    GE’s SiC MOSFETs could support the development of more robust sensing, actuation and controls that open new possibilities in space exploration and enable the control and monitoring of hypersonic vehicles traveling at speeds of MACH 5, or greater than 3,500 MPH. That is more than six times the speed that a typical commercial passenger flight travels today.

    Andarawis noted that the electronics industry has seen a number of exciting developments in high temperature electronics with SiC. The National Aeronautics and Space Administration (NASA) has demonstrated SiC JFETs that have tolerated well beyond the 800 degree C threshold. For a long time, the conventional wisdom has been that SiC MOSFETs cannot offer the same degrees of reliability and durability as JFETs at high temperatures. New advancements with the gate oxides in SiC MOSFETS, which have previously been temperature and lifetime limiters, have narrowed the gap considerably.

    The recent demonstration of Andarawis and the GE Research shows that MOSFETs could expand the portfolio of available options to consider. This builds on a growing body of work in SiC-enabled electronics that GE Aerospace researchers are at the forefront of leading. The team is currently collaborating on a project with NASA to apply novel SiC photodiode technology to develop and demonstrate a Ultraviolet imager that enhances space missions to the surface of Venus. GE research teams also are fabricating NASA’s JFETs in our cleanroom facility as part of work they are doing for an external semiconductor partner.

    The cleanroom facility is a major focal point of GE’s research in SiC. It is a 28,000 sq. ft., Class 100 (ISO 9001 certified) facility, based on GE’s research campus in Niskayuna, NY. The facility can support technology from R&D through low-volume production and transfer technology to high-volume manufacturing supporting GE internal products or select external commercial partners (www.ge.com/research/). Andawaris said, “GE’s Cleanroom facility is a tremendous research, prototyping and production asset that is allowing us to rapidly develop and scale promising electronics platforms like SiC MOSFETs. We are excited about the road ahead as we support GE Aerospace’s efforts to redefine air travel in the skies and beyond.”

    Original – GE Research

    Comments Off on GE Scientists Demonstrate Ultra-High Temperature SiC MOSFET Electronics
  • Vitesco Technologies and onsemi Sign SiC Long-Term Supply Agreement and Agree to Invest In SiC Technology Capacity Expansion

    Vitesco Technologies and onsemi Sign SiC Long-Term Supply Agreement and Agree to Invest In SiC Technology Capacity Expansion

    2 Min Read

    Vitesco Technologies and onsemi announced a 10-year long-term supply agreement worth $1.9 billion (€1.75 billion) for silicon carbide (SiC) products to enable Vitesco Technologies’ ramp in electrification technologies. Vitesco Technologies, a leading international manufacturer of modern drive technologies and electrification solutions, is providing an investment of $250 million (€230 million) to onsemi for new equipment for SiC boule growth, wafer production and epitaxy to secure access to SiC capacity.

    The equipment will be used to produce SiC wafers to support Vitesco Technologies’ growing SiC demand. In parallel, onsemi, a leader in intelligent power and sensing technologies, will continue to invest substantially into end-to-end SiC supply chain.

    In addition, Vitesco Technologies and onsemi will collaborate on optimized customer solutions for Vitesco Technologies. onsemi’s highly efficient EliteSiC MOSFETs will be used by Vitesco Technologies to execute the recent orders as well as future projects for traction inverters and electric vehicle drives.

    SiC semiconductors are a pivotal technology for electrification enabling highly efficient power electronics leading to reduced charging times and longer range for electric cars. Especially at high voltage levels such as 800 V, SiC inverters are more efficient than silicon models. Since 800 V is the prerequisite for fast and thus convenient high-voltage charging, SiC devices are at the beginning of a worldwide boom.  

    Original – Vitesco Technologies

    Comments Off on Vitesco Technologies and onsemi Sign SiC Long-Term Supply Agreement and Agree to Invest In SiC Technology Capacity Expansion
  • Coherent and Mitsubishi Electric Collaborate to Scale Manufacturing of SiC Power Electronics on 200 mm SiC Technology Platform

    Coherent and Mitsubishi Electric Collaborate to Scale Manufacturing of SiC Power Electronics on 200 mm SiC Technology Platform

    3 Min Read

    Coherent Corp. and Mitsubishi Electric Corporation have signed a memorandum of understanding (MOU) to collaborate on a program to scale manufacturing of SiC power electronics on a 200 mm technology platform.

    The market for electric vehicles is expanding worldwide and is just one of several emerging applications driving the exponential growth in SiC power devices, which have lower energy losses, higher operating temperatures, and higher switching speeds compared with power devices based on silicon. The high efficiency of SiC power devices is expected to be a significant contributor to global decarbonization and the green transformation.

    To meet the rapidly growing demand, Mitsubishi Electric announced an investment of approximately 260 billion yen in the five-year period ending March 2026. A major portion of the investment, approximately 100 billion yen, will be used to construct a new plant for SiC power devices, based on a 200 mm technology platform, and enhance related production facilities. Under the MOU, Coherent will develop a supply of 200 mm n-type 4H SiC substrates for Mitsubishi Electric’s future SiC power devices manufactured at the new facility.

    “We are excited to build on our relationship with Mitsubishi Electric, a pioneer in SiC power devices and a global market leader in SiC power modules for high-speed trains, including the famous Shinkansen in Japan,” said Sohail Khan, Executive Vice President, New Ventures & Wide-Bandgap Electronics Technologies at Coherent. “We have a long track record of supplying SiC substrates to Mitsubishi Electric and are looking forward to expanding our relationship with them to scale their new 200 mm SiC platform.”

    “Coherent has been for many years a reliable supplier of high-quality 150 mm SiC wafer substrates to Mitsubishi Electric,” said Masayoshi Takemi, Executive Officer, Group President, Semiconductor & Device at Mitsubishi Electric. “We are delighted to enter into this close partnership with Coherent to scale our respective SiC manufacturing platforms to 200 mm.”

    Coherent has decades of experience in the development of SiC materials. The company demonstrated the world’s first 200 mm conductive substrates in 2015. In 2019, Coherent began to supply 200 mm SiC substrates under REACTION, a Horizon 2020 four-year program funded by the European Commission.

    Over the years, Mitsubishi Electric has led the SiC power module markets for high-speed trains, high-voltage industrial applications, and home appliances. Mitsubishi Electric made history by launching the world’s first SiC power modules for air conditioners in 2010, and became the first supplier of a full SiC power module for Shinkansen high-speed trains in 2015. Mitsubishi Electric has also built extensive expertise by serving customers’ needs for high performance and high reliability through its outstanding techniques of processing and screening, as well as many other facets of developing and manufacturing SiC power modules.

    Power electronics based on SiC have demonstrated their potential to have a highly beneficial impact on the environment via significant reductions in carbon dioxide emissions. Through the rapidly growing demand for SiC power devices, Coherent and Mitsubishi Electric will accelerate their contribution to sustainable energy consumption and the decarbonization of society.

    Original – Coherent

    Comments Off on Coherent and Mitsubishi Electric Collaborate to Scale Manufacturing of SiC Power Electronics on 200 mm SiC Technology Platform
  • Penn State and onsemi Sign MOU to Boost Silicon Carbide Research in the U.S.

    Penn State and onsemi Sign MOU to Boost Silicon Carbide Research in the U.S.

    3 Min Read

    Penn State and onsemi, a leader in intelligent power and sensing technologies, announced the signing of a memorandum of understanding (MOU) towards an $8 million strategic collaboration which includes the establishment of the onsemi Silicon Carbide Crystal Center (SiC3) at Penn State’s Materials Research Institute (MRI). onsemi will fund SiC3 with $800k per year over the next 10 years.

    Silicon carbide (SiC) is vital for enabling efficiency in electric vehicles (EVs), EV charging and energy infrastructure and contributes to the decarbonization of the global economy. Academic research in SiC made great advancements in the late 1990s and early 2000s, but has since diminished in the U.S. This agreement will put SiC crystal research in America back on the map.

    In addition to conducting SiC research at SiC3, Penn State and onsemi will raise awareness about the increasing demand for tech jobs in the semiconductor industry. This is part of their efforts to enhance the share of U.S. semiconductor manufacturing. They also will partner on workforce development initiatives such as internship and cooperative programs and include SiC and wide bandgap crystal studies in Penn State’s curriculum. The relationship with Penn State is part of onsemi’s commitment to promoting STEAM (Science, Technology, Engineering, Arts, and Mathematics) education, ranging from helping K-12 students in underserved communities to university collaborations that support the development of the workforce for today and the future.

    Lora Weiss, Penn State senior vice president of research, noted that the Penn State-onsemi collaboration is a match that makes perfect sense given each entity’s demonstrated strengths.

    “onsemi is a proven innovator, delivering a comprehensive portfolio of intelligent power and sensing technologies to enable and accelerate sustainable solutions across multiple markets,” Weiss said. “At the same time, as per the National Science Foundation’s research expenditure rankings, Penn State is ranked first in materials science and second in materials engineering. We have world-class nanofab and characterization facilities that support research on thin films, silicon carbide and other materials used in semiconductors and other technologies. These complementary capabilities between onsemi and Penn State will have a strong impact on research and development, economic growth, and workforce development.”

    Penn State’s capabilities make them an ideal academic partner for onsemi to advance the state of the art in silicon crystal growth.

    “Penn State is uniquely positioned to rapidly establish a silicon carbide crystal growth research program,” said Pavel Freundlich, chief technology officer, Power Solutions Group, onsemi. “The university offers a wide breadth of capability based on its current materials research, wafer processing capabilities in its nanofab facility, and a comprehensive, world-class suite of metrology instrumentation.”

    The relationship developed over a period of due diligence during which it became clear that their cooperative efforts would position Penn State and onsemi as leaders in SiC research.

    “Over the next decade, this collaboration will enable Penn State to become the nation’s leading resource for semiconductor crystal science and workforce development,” said Justin Schwartz, Penn State executive vice president and provost. “And this would not be possible without the relationship-building efforts of Priya Baboo, senior director of corporate and industry engagement, and the technical expertise of Joshua Robinson, professor of materials science and engineering, and their counterparts at onsemi.” Scott Allen, vice president, University Relations, onsemi, added that “Penn State’s expansion of its curriculum to offer specialty courses in SiC and wideband gap technology will play a key role in meeting onsemi’s strategic workforce development goals and help to meet American semiconductor workforce goals as outlined in the recently signed CHIPS and Science Act.”

    Original – onsemi

    Comments Off on Penn State and onsemi Sign MOU to Boost Silicon Carbide Research in the U.S.
  • New Innovation Center to Provide AIXTRON with Expanded Capacities for R&D

    New Innovation Center to Provide AIXTRON with Expanded Capacities for R&D

    2 Min Read

    AIXTRON SE plans to invest up to 100 million euros at its Herzogenrath site. A new innovation center is to be built, which will provide the manufacturer of deposition equipment to the semiconductor industry with enhanced capacities for research and development. AIXTRON received approval for the new project from the company’s Supervisory Board.

    The new innovation center will provide 1000m2 of cleanroom space and will be built on the company’s premises in Herzogenrath, Germany. The new building will create further capacities for the next product generations which are already in preparation, as well as for further product developments beyond that.

    “With our products, we address the megatrends of digitalization, electromobility and energy efficiency and are experiencing a strong and steadily growing demand. Technical innovations and product developments that precisely address the needs of our customers are the key to our success. And our dynamic environment offers us further growth opportunities,” says Dr. Felix Grawert, CEO of AIXTRON SE. “We are therefore very pleased that the Supervisory Board has approved this project which will enable us to create the foundation for further product developments and for future growth.”

    The importance of product development in the dynamic semiconductor industry is demonstrated by the success of AIXTRON’s new “G10” system generations. In the first year after market introduction, AIXTRON expects to generate more than 40 percent of its annual revenues with this new product generation. Right after its official launch, the new tool for the silicon carbide material system (G10-SiC) has already generated a high order intake. And it is expected to continue to drive further growth all throughout 2023 and beyond.

    Also, the new AIXTRON solution for the gallium-arsenide/indium-phosphite material system (G10-AsP) which was launched at the beginning of 2023 already enjoys a strong demand. For the first time, it enables the high-volume production of Micro LEDs and photonic components such as lasers on wafers with a diameter of up to 200mm. Later in the year, the new G10 system for gallium nitride (GaN) will also be launched. The material systems SiC and GaN have the potential to fully cover the complete range of power electronics, from electromobility to renewable energy technologies to fast data transmission. With their outstanding material properties, they will ensure a significant reduction in global CO2 emissions in these areas and help electromobility achieve a breakthrough.

    Original – AIXTRON

    Comments Off on New Innovation Center to Provide AIXTRON with Expanded Capacities for R&D
  • Pioneering Interactive Datasheets from Nexperia Put MOSFET Behavior Analysis at Engineers’ Fingertips

    Pioneering Interactive Datasheets from Nexperia Put MOSFET Behavior Analysis at Engineers’ Fingertips

    3 Min Read

    Nexperia announced a significant raising of the bar in semiconductor engineer design support with the release of next-generation interactive datasheets to accompany its Power MOSFETs. By manipulating interactive sliders within the datasheets, users can manually adjust the voltage, current, temperature and other conditions for their circuit application and watch how the operating point of a device dynamically responds to these changes.

    These interactive datasheets effectively offer a type of graphical user interface to a circuit simulator, using Nexperia’s advanced electrothermal models to calculate the operating point of a device. In addition, they allow engineers to visualize immediately the interaction between parameters such as gate voltage, drain current, RDS(on) and temperature. Their collective contribution to the device behavior is then displayed dynamically in tables or graphs. As a result, Nexperia’s interactive datasheets can significantly increase productivity by eliminating the time needed for an engineer to perform manual calculations or set up and debug a circuit simulation.

    The datasheet is commonly the first port of call when a design engineer is looking to select a device for an application. However, while they contain a wealth of information, including the minimum, maximum and typical specifications across dozens of device parameters, it is often difficult to determine how these are interrelated. Consequently, engineers must perform time-consuming manual calculations or set up a circuit simulator using models provided by the manufacturer (assuming these are available) to thoroughly investigate a device’s behavior. Even then, many manufacturers’ simulation models do not show the effect of temperature changes on device behavior. The new interactive datasheets from Nexperia support engineers by showing real-time interaction across different parameters as they are manually changed with the easy-to-use datasheet sliders.

    Chris Boyce, Senior Director of Nexperia’s Power MOSFET business adds, “Whether you are a Design Engineer looking to see how a device will perform at elevated temperature, or a Component Engineer trying to compare devices under different test conditions, our new interactive datasheets are designed to make your life easier.”

    The technology powering these datasheets is the same as that used in Nexperia’s hugely successful precision electrothermal MOSFET models, which demonstrate how the behaviour of discrete MOSFETs changes with temperature. The new interactive datasheets are offered in addition to the traditional static datasheets and operate in any standard web browser without the requirement of additional software for device simulation.

    With the initial version currently under patent application, Nexperia will be reaching out to its global community of customer engineers to evaluate how interactive datasheets are used in real-time in order to broaden the functionality of future versions.

    More than 200 interactive datasheets are already available, covering the devices in Nexperia’s latest generations of Automotive and Industrial Power MOSFETs. Over time, the Company plans to make them available for its entire portfolio of discrete MOSFETs and other devices. Try a live interactive datasheet in action at nexperia.com/interactive-datasheet

    Original – Nexperia

    Comments Off on Pioneering Interactive Datasheets from Nexperia Put MOSFET Behavior Analysis at Engineers’ Fingertips
  • DENSO and USJC Announce Mass Production Shipment of Automotive IGBT

    DENSO and USJC Announce Mass Production Shipment of Automotive IGBT

    3 Min Read

    DENSO CORPORATION (DENSO), a leading mobility supplier, and United Semiconductor Japan Co., Ltd. (“USJC”), a subsidiary of global semiconductor foundry United Microelectronics Corporation (“UMC”), announced a joint collaboration to produce insulated gate bipolar transistors (IGBT), which have entered mass production at the 300mm fab of USJC. A first shipment ceremony was held last week to mark this important milestone. It comes just one year after the companies announced a strategic partnership for this critical power semiconductor used in electric vehicles.

    As adoption of electric vehicles accelerates, automakers are seeking to boost powertrain efficiency while also increasing cost-effectiveness of electrified vehicles. The jointly invested line at USJC supports the production of a new generation of IGBT developed by DENSO, which offers 20% reduction in power losses compared with earlier generation devices. Production is expected to reach 10,000 wafers per month by 2025.

    The ceremony was held at USJC’s fab in Mie Prefecture, Japan. Attendees included by DENSO President Koji Arima, UMC Co-President Jason Wang, USJC President Michiari Kawano, Director-General of the Commerce and Information Policy Bureau at Japan’s Ministry of Economy, Trade and Industry (METI) Satoshi Nohara, Governor of Mie Prefecture Katsuyuki Ichimi, and Mayor of Kuwana City Narutaka Ito.

    “Today, we are thrilled to welcome a memorable shipping ceremony that symbolizes the partnership between DENSO, UMC and USJC. We are from different cultures such as semiconductor industry and automobile industry. However, we have worked steadily with mutual respect which is a source of our strong competitiveness. DENSO, together with our trusted partners, will continue to further accelerate electrification through the production of competitive semiconductors in order to preserve the global environment and create a society full of smiles,” said Koji Arima, President of DENSO.

    “USJC is proud to be the first semiconductor foundry in Japan to manufacture IGBT on 300mm wafers, offering customers greater production efficiency than the standard fabrication on 200mm wafers. Thanks to our dedicated teams and support from DENSO, we were able to complete trial production and reliability testing without delay and honor the mass production date as agreed with the customer,” said Michiari Kawano, President of USJC.

    “It is an honor to be a strategic partner of DENSO, a leading automotive solution provider to global automakers. This collaboration fully demonstrates UMC’s manufacturing capability and our collaborative approach to ensure the success of our foundry customers,” said Jason Wang, Co-President of UMC. “The electrification and automation of cars will continue to drive up semiconductor content, particularly for chips manufactured using specialty foundry processes on 28nm and above nodes. As a specialty technology leader, UMC is well positioned to play a bigger role in the automotive value chain and enabling our partners to capture opportunities and win market share in this rapidly evolving industry.

    Original – DENSO

    Comments Off on DENSO and USJC Announce Mass Production Shipment of Automotive IGBT
  • Power Integrations Unveils New SCALE-iFlex LT NTC IGBT/SiC Module Gate Drivers with Temperature Readout

    2 Min Read

    Power Integrations, the leader in gate-driver technology for medium- and high-voltage inverter applications, introduced the SCALE-iFlex™ LT NTC family of IGBT/SiC module gate drivers. The new gate drivers target the popular new dual, 100 mm x 140 mm style of IGBT modules, such as the Mitsubishi LV100 and the Infineon XHP 2, as well as silicon carbide (SiC) variants thereof up to 2300 V blocking voltage. The SCALE-iFlex LT NTC drivers provide Negative Temperature Coefficient (NTC) data – an isolated temperature measurement of the power module – which enables accurate thermal management of converter systems. This is particularly important for systems with multiple modules arrayed in parallel, ensuring proper current sharing and dramatically enhancing overall system reliability.

    Thorsten Schmidt, product marketing manager at Power Integrations, commented: “Designers of renewable energy and rail systems using SCALE-iFlex drivers already benefit from increased system performance; the SCALE-iFlex approach handles paralleling so expertly that one module in five can be eliminated without loss of performance or current de-rating. Adding an isolated NTC output reduces hardware complexity – particularly cables and connectors – and contributes to system observability and overall performance.”

    Based on Power Integrations’ proven SCALE™-2 technology, SCALE-iFlex LT gate drivers improve current sharing accuracy and therefore increase the current carrying capability of multiple-paralleled modules by 20 percent, allowing users to significantly increase the semiconductor utilization of their converter stacks. This is possible because the localized control of each 2SMLT0220D MAG (Module Adapted Gate driver) unit ensures precise control and switching, enabling excellent current sharing. Advanced Active Clamping (AAC) is employed to deliver accurate overvoltage protection.

    To further increase space saving, up to four MAG-driven power modules can be parallel-connected from a single 2SILT1200T Isolated Master Control (IMC) unit, which can also be mounted on a power module due to its compact outline. The gate drivers are fully qualified to IEC 61000-4-x (EMI), IEC-60068-2-x (environmental) and IEC-60068-2-x (mechanical) specifications, and undergo complete type testing – low voltage, high voltage, thermal cycling – shortening designer development time by 12 to 18 months. A comprehensive set of protection features is included, and parts are optionally available with conformal coating.

    Original – Power Integrations

    Comments Off on Power Integrations Unveils New SCALE-iFlex LT NTC IGBT/SiC Module Gate Drivers with Temperature Readout
  • Infineon and Hon Hai Technology Group (Foxconn) Sign MoU to Partner on SiC Collaboration

    Infineon and Hon Hai Technology Group (Foxconn) Sign MoU to Partner on SiC Collaboration

    2 Min Read

    Infineon Technologies AG, the global leader in automotive semiconductors, and Hon Hai Technology Group (“Foxconn”), the world’s largest electronics manufacturing services provider, aim to establish a long-term partnership in the field of electric vehicles (EV) to jointly develop advanced electromobility with efficient and intelligent features. The Memorandum of Understanding (MoU) focuses on silicon carbide (SiC) development, leveraging Infineon’s automotive SiC innovations and Foxconn’s know-how in automotive systems.

    “The automotive industry is evolving. With the rapid growth of the EV market and the associated need for more range and performance, the development of electromobility must continue to advance and innovate,” said Peter Schiefer, President of the Infineon Automotive Division. “Infineon’s commitment and passion for innovation and zero-defect quality has made us the best partner for our customers. We look forward to writing a new chapter in electromobility together with Foxconn.”

    “We are pleased to be working with Infineon and are confident that this collaboration will result in optimized architecture, product performance, cost competitiveness and high system integration to provide customers with the most competitive automotive solutions,” said Jun Seki, Foxconn’s Chief Strategy Officer for EVs.

    According to the MoU, the two companies will collaborate on the implementation of SiC technology in automotive high-power applications like traction inverters, onboard chargers, and DC-DC converters. Both parties intend to jointly develop EV solutions with outstanding performance and efficiency based on Infineon’s automotive system understanding, technical support and SiC product offerings combined with Foxconn’s electronics design and manufacturing expertise and the capability of system-level integration.

    In addition, the two companies plan to establish a system application center in Taiwan to further expand the scope of their cooperation. This center will focus on optimizing vehicle applications, including smart cabin applications, advanced driver assistance systems and autonomous driving applications. It will also address electromobility applications such as battery management systems and traction inverters. The collaboration covers a wide range of Infineon’s automotive products, including sensors, microcontrollers, power semiconductors, high-performance memories for specific applications, human machine interface and security solutions. The system application center is expected to be established within 2023.

    Original – Infineon Technologies

    Comments Off on Infineon and Hon Hai Technology Group (Foxconn) Sign MoU to Partner on SiC Collaboration
  • onsemi 1200 V EliteSiC M3S Devices Enhance Efficiency of EVs and Energy Infrastructure Applications

    onsemi 1200 V EliteSiC M3S Devices Enhance Efficiency of EVs and Energy Infrastructure Applications

    2 Min Read

    onsemi, a leader in intelligent power and sensing technologies, announced the release of the latest generation of 1200 V EliteSiC silicon carbide (SiC) M3S devices, which enable power electronics designers to achieve best-in-class efficiency and lower system cost. The new portfolio includes EliteSiC MOSFETs and modules that facilitate higher switching speeds to support the growing number of 800 V electric vehicle (EV) on-board charger (OBC) and energy infrastructure applications, such as EV charging, solar and energy storage systems.

    Also, part of the portfolio, are new EliteSiC M3S devices in half-bridge power integrated modules (PIMs) with industry leading lowest Rds(on) in a standard F2 package. Targeting industrial applications, the modules are ideally suited for DC-AC, AC-DC and DC-DC high power conversion stages. They provide higher levels of integration with optimized direct bonded copper designs to enable balanced current sharing and thermal distribution between parallel switches. The PIMs are designed to deliver high power density in energy infrastructure, EV DC fast charging and uninterruptible power supplies (UPS).

    “onsemi’s latest generation of automotive and industrial EliteSiC M3S products will allow designers to reduce their application footprint and system cooling requirements,” said Asif Jakwani, senior vice president and general manager of the Advanced Power Division, onsemi. “This helps designers to develop high power converters with higher levels of efficiency and increased power densities.”

    The automotive-qualified 1200 V EliteSiC MOSFETs are tailored for high-power OBCs up to 22 kW and high voltage to low voltage DC-DC converters. M3S technology has been developed specifically for high-speed switching applications and has the best-in-class figure of merits for switching losses.

    Original – onsemi

    Comments Off on onsemi 1200 V EliteSiC M3S Devices Enhance Efficiency of EVs and Energy Infrastructure Applications