-
LATEST NEWS / TOP STORIES3 Min Read
Forge Nano, Inc., a leading ALD equipment provider and materials science company, further expanded into the semiconductor market with the unveiling of its new Atomic Layer Deposition (ALD) product offering – TEPHRA™ – Forge Nano’s new single-wafer, ALD cluster platform. By offering single-wafer ALD coating quality at throughputs similar to the speed of batch systems, Forge Nano’s TEPHRA ™ will allow customers to produce best-in-class coatings at commercial scale with unrivaled precursor efficiency and speed.
Powered by Forge Nano’s ALDx technology, which offers ultrathin, uniform, pinhole-free films with an unprecedented 10x throughput for single-wafer processing, TEPHRA is dedicated to the manufacturing of specialty semiconductor applications on 200mm wafers and below. With 100x efficient chemical use, rapid cycle times, increased yield, and low-risk manufacturing, TEPHRA is the only single-wafer cluster tool with commercial throughput speeds serving applications in advanced packaging, power semiconductor, radio frequency devices (RFD), microLEDs, microelectromechanical systems (MEMS), and more.
“TEPHRA is designed to unlock new capabilities to meet the growing demand of novel More-than-Moore market device applications that seek high-throughput ALD capabilities without sacrificing film qualities. Forge Nano will enable advanced device architectures with groundbreaking efficiency in the semiconductor space with our innovative ALD wafer tools that prioritize cost, performance and efficiency,” said Paul Lichty, CEO of Forge Nano. “With TEPHRA, Forge Nano is opening new coating solutions and opportunities for our proprietary coating techniques that address high aspect ratio structures, which have previously been underserved in the semiconductor industry.”
Forge Nano’s ALDx technology enables conformal coatings to scale to aspect ratios greater than 10:1. With a flagship all-ALD Metal Barrier Seed film application, TEPHRA offers nitride and metal depositions in high aspect ratio structures for advanced 3D integration applications, including through silicon and through glass vias. By moving beyond 10:1 aspect ratios, manufacturers can scale their packaging processes and reduce power consumption by overcoming common pitfalls of directional deposition technologies, including PEALD, which struggle with conformality and void formation.
TEPHRA is available in a range of configurations with the option for four-sided, six-sided and eight-sided cluster platforms. TEPHRA can process wafers up to 200 mm between 80 and 300°C with six process precursor channels and dedicated chambers for oxide, nitride and metal depositions. TEPHRA ™ also features Forge Nano’s patented CRISP technology, a suite of catalyzed thermal ALD processes that enable low temperature and hard-to-deposit materials without the need for plasma.
For more information on Forge Nano’s TEPHRA ™ product, visit the TEPHRA product page at: https://www.forgenano.com/products/tephra. SEMICON West 2024 attendees can stop by the Forge Nano booth (#133), located in the south exhibition hall, for additional product information and to discuss capabilities with our product specialists.
Original – Forge Nano
-
GaN / LATEST NEWS / TOP STORIES / WBG3 Min Read
GlobalFoundries announced that it has acquired Tagore Technology’s proprietary and production proven Power Gallium Nitride (GaN) IP portfolio, a high-power density solution designed to push the boundaries of efficiency and performance in a wide range of power applications in automotive, internet of things (IoT) and artificial intelligence (AI) datacenter. As the digital world continues to evolve with technologies like Generative AI, GaN stands out as a pivotal solution for sustainable and efficient power management particularly in datacenters.
Today’s announcement reinforces GF’s commitment to large-scale manufacturing of GaN technology that offers a suite of benefits to help datacenters meet the increasing power demands while maintaining or improving power efficiency, reducing costs and managing heat generation. The acquisition expands GF’s power IP portfolio and broadens access to market leading GaN IP that will enable GF customers to quickly bring differentiated products to market. As a part of the acquisition, a team of experienced engineers from Tagore, dedicated to the development of GaN technology, will be joining GF.
“We are committed to being the foundation of our customers’ power applications today and for decades to come,” said Niels Anderskouv, chief business officer at GF. “With this acquisition, GF takes another step toward accelerating the availability of GaN and empowering our customers to build the next generation of power management solutions that will reshape the future of mobility, connectivity and intelligence.”
“The accelerating demand for more power efficient semiconductors is dramatically increasing, and Tagore has been at the forefront of developing disruptive solutions using GaN technology for a wide range of power devices,” said Amitava Das, co-founder and chief operating officer of Tagore Technology. “The team and I are excited to join GlobalFoundries to increase our focus on market-leading IP that will help address power design challenges and support the continued evolution of automotive, industrial and AI datacenter power delivery systems.”
In February 2024, GF was awarded $1.5 billion in direct funding under the U.S. CHIPS and Science Act, part of that investment is targeted towards enabling the high-volume manufacturing of critical technologies including GaN to securely produce more essential chips.
Combining this manufacturing capacity with the technical know-how of the Tagore team, GF is set to transform AI system efficiency, especially in edge or IoT devices, where reduced power consumption is critical.
“GlobalFoundries is at the forefront of technological advancements. With Tagore Technology joining the GF India team, we will further enhance our tech capabilities, particularly in emerging areas like GaN,” said Jitendra Chaddah, vice president and India country head at GF. “I welcome the Tagore team to GF, and I am excited about the work we will do as we continue to grow and strengthen our engineering capabilities together.”
Original – GlobalFoundries
-
LATEST NEWS / PROJECTS / Si / SiC / TOP STORIES / WBG8 Min Read
SMC Diode Solutions, an American-led semiconductor design and manufacturing company, celebrated the opening of its second power discrete fab in Nanjing, China. The new facility realized volume production only 21 months after groundbreaking in September of 2022, and will begin shipments to customers in Q4 2024 for high power and high voltage rectifiers and MOSFET 6-inch and 8-inch wafers.
This new fab marks a milestone in SMC’s growth as they further invest in the China market and the growing renewable energy sector. The new 300,000 square foot facility is set to produce 1.2 million silicon wafers and 60,000 silicon carbide wafers per year, increasing SMC’s total production by over four times. SMC’s current fab in Lukou, Nanjing currently produces 300,000 silicon wafers per year. The $3 billion RMB investment in the new fab will allow SMC to handle the end-to-end production of silicon carbide products for the first time and has created three hundred new jobs.
“As the world moves towards using more and more renewable energy, we are thrilled to now be able to participate in the sector and be part of the solution to increase green energy usage and protect our Earth. We are very excited to have our new fab up and running and we look forward to servicing our customers’ needs better with the increased capacity.” – Dr. Yunji Corcoran, SMC chairwoman and chief executive officer.
As Nanjing is also home to SMC’s current fab, the city was an advantageous choice for the new fab location. With their experienced management team, starting up the new fab was a seamless process, allowing production to begin not long after breaking ground. The city is also home to abundant resources and engineering talent, making it an ideal place for SMC to grow and expand.
Power Semiconductors Weekly team had pleasure to interview Dr. Yunji Corcoran on this occasion:
- The company history dates back to 1997. Can you tell us about some of the major milestones and your semiconductor journey so far?
Certainly. In the early stages of our company, from 1997 until about 2014, we focused on the US and South Korean markets. We were growing steadily, but remained focused on the quality of our products. From 2014 to 2019, we began to focus on active growth, but I consider this more of a preparation stage for our company’s expansion. We investigated ways to create better products and put more of our R&D efforts into new silicon and Silicon Carbide (SiC) products. We also began strengthening our salesforce globally. From 2019 on, we started shipping our new products, both silicon and SiC. Now, we have reached our most significant milestone to date: opening our second fab and quadrupling our production capabilities. We are beginning a new phase that will focus on growing our presence in the power semiconductor market.
- Today we see many semiconductor companies investing a lot of energy into the automotive, renewables, and AI applications. With a wide product line and a new wafer fab to support further expansion, what are your major areas of interest and how do you see them evolve in the coming years?
Automotive, renewables, and AI are extremely relevant markets for both our company and the overall semiconductor industry right now. AI requires a lot of power supply, so we plan to grow our power supply products in that area alongside our existing customers. Automotive and renewables are newer segments for us and the semiconductor market, but ones with incredibly high demand right now. The market is growing rapidly, so we are growing with aims to successfully compete in those areas as well.
Our plan is to focus on our growth within the power supply market and naturally expand into the sustainable energy market. As the world continues to prioritize clean energy, the demand for EV and renewable energy products will also grow. Since SiC products in particular meet the specific power needs of those applications, a rise in the use of SiC products seems likely. I suspect the semiconductor industry will play a crucial role in providing more clean energy globally, which we are excited to be a part of.
- With the new fab you plan to address both silicon and silicon carbide markets? What is your view on the growing demand for SiC and how SMC Diode Solutions plan to correspond to it?
Yes, our new fab will produce both silicon and SiC products. Our current fab produces approximately 300,000 silicon wafers per year, but our new fab has the capability to produce a total of 1,260,000 wafers per year – 1,200,000 silicon and 60,000 SiC. We are very much focused on our silicon power products and view our SiC line as a natural extension of that.
The growing demand for SiC products makes perfect sense. SiC is a material with remarkable properties. It is considered a “wide bandgap” material, which means that it requires more energy to excite electrons from the valence band to the conduction band compared to standard silicon semiconductors. As a result, it offers superior performance characteristics including higher reverse voltage capabilities and greater stability at high temperatures.
Overall, SiC-based products offer improved efficiency and reliability compared to traditional silicon counterparts. For a lot of newer applications, particularly in the sustainable energy sector, these capabilities have become more and more necessary. We see our new fab opening as a natural response to this demand, ande are increasing our capabilities to grow alongside the market.
- Today you have four major locations in China, South Korea, Germany and the USA. Do you plan to expand your network further?
Yes, definitely. We consider SMC to be a global company, and have a range of operations throughout the world, including our headquarters in China and other offices in the US, Germany, South Korea, the UK, and India. As we grow and gain customers throughout the world, we will continue to establish more locations, whether they are R&D, manufacturing, packaging, or sales offices.
- Speaking of the network and future growth opportunities. Both of your fabs are located in Nanjing. With many companies in the US already taking advantage of the CHIPS and Science Act, do SMC Diode Solutions have any considerations to join the rest and use this chance to strengthen the US presence?
It is exciting that governments are recognizing the importance of semiconductors through initiatives like the CHIPS and Science Act, and I think this will really bolster the industry as a whole. Right now, we’re focused on our manufacturing efforts in Asia, but are open to the possibility as we continue to grow.
- With the rise of the Chinese semiconductor industry and a very competitive landscape, how do you position your company and differentiate from the growing number of new entrants?
The key thing is our products. Our products stand out for their high quality and outstanding performance. Our team’s commitment to customer service really sets us apart as well.
Our company also approaches the semiconductor market from a unique perspective. As a business with global locations and leadership, we deeply understand the needs of the international market. We prioritize high quality standards that the international market demands while benefiting from relatively low overall production costs, creating an ideal product for our customers.
- We see many companies in China, Europe, the US, shifting to the vertical structure and full integration of all processes – from growing the semiconductor boules to the packaging of the final product. What are your thoughts on such an approach and do you see it applicable for your company in the future as well?
I’ve also noticed this trend in the industry. While I can see the benefits of this approach for some, I would not anticipate applying it within SMC. I believe in focusing our efforts on what we’re able to do best. We have specialized in design and manufacturing for over 25 years and plan to continue that.
We do have an existing silicon module line, so we are considering expanding into SiC modules in the future. However, for our company we believe it’s best to stay focused on the functions we currently have and prioritize delivering the highest quality product.
- And lastly, after the announcement of a new fab opening, many of your partners would be willing to engage in discussions to find out more. What trade shows or conferences in the second half of 2024 can they meet the company at?
We would love to engage in those discussions as well. You can find us with our own booth at Electronica 2024 this September in Munich, Germany and the Anaheim Electronics & Manufacturing Show (AEMS 2024) in Anaheim, California this October. We will also be attending ISCRM 2024 in Raleigh, North Carolina this fall.
More often than not, you will find someone from our company at any major semiconductor event. Feel free to contact us at sales@smc-diodes.com for any questions or check our website updates to see where you can find us next.
Original – SMC Diode Solutions
-
GaN / LATEST NEWS / PROJECTS / SiC / TOP STORIES / WBG4 Min Read
Semiconductor manufacturer Nexperia announced plans to invest USD 200 million (appx. 184 million Euros) to develop the next generation of wide bandgap semiconductors (WBG) such as silicon carbide (SiC) and gallium nitride (GaN), and to establish production infrastructure at the Hamburg site. At the same time, wafer fab capacity for silicon (Si) diodes and transistors will be increased. The investments are jointly announced with Hamburg’s Minister for Economic Affairs, Dr. Melanie Leonhard, on the occasion of the 100-year anniversary of the production site.
To meet the growing long-term demand for efficient power semiconductors, all three technologies (SiC, GaN, and Si) will be developed and produced in Germany starting in June 2024. This means Nexperia is supporting key technologies in the fields of electrification and digitalization. SiC and GaN semiconductors enable power-hungry applications, such as data centers, to operate with exceptional efficiency and are core building blocks for renewable energy applications and electromobility. These WBG technologies have great potential and are increasingly important for achieving decarbonization goals.
“This investment strengthens our position as a leading supplier of energy-efficient semiconductors and enables us to utilize available electrical energy more responsibly,” comments Achim Kempe, COO and managing director at Nexperia Germany. “In the future, our Hamburg fab will cover the complete range of WBG semiconductors while still being the largest factory for small signal diodes and transistors. We remain committed to our strategy of producing high-quality, cost-efficient semiconductors for standard applications and power-intensive applications, while addressing one of the greatest challenges of our generation: meeting the growing demand for energy and while reducing the environmental footprint.”
First production lines for high-voltage GaN D-Mode transistors and SiC diodes started in June 2024. The next milestone will be modern and cost-efficient 200 mm production lines for SiC MOSFETs and GaN HEMTs. These will be established at the Hamburg factory over the next two years. At the same time, the investment will help to further automate the existing infrastructure at the Hamburg site and expand silicon production capacity by systematically converting to 200 mm wafers. Following the expansion of the clean room areas, new R&D laboratories are being built to continue to ensure a seamless transition from research to production in the future.
In addition to advancing technology, the semiconductor supplier expects the initiative to stimulate local economic development. The investments make an important contribution to securing and creating jobs and enhancing the European Union’s semiconductor self-sufficiency. Nexperia works closely with universities and research institutes to benefit from each other’s expertise and promote highly qualified employee training. Nexperia relies on a robust research and development ecosystem in Hamburg and throughout Europe. Development partnerships and co-operations, e.g. in the field of GaN technology as part of the Industrial Affiliation Program (IIAP) of the nanoelectronics research center imec, play a crucial role. These and other collaborations ensure continuous innovation and technological excellence in Nexperia’s products.
“The planned investment enables us to bring WBG chip design and production to Hamburg. However, SiC and GaN are by no means new territory for Nexperia. GaN FETs have been part of our portfolio since 2019, and in 2023 we expanded our range of products to include SiC diodes and SiC MOSFETs, the latter in collaboration with Mitsubishi Electric. Nexperia is one of the few suppliers to offer a comprehensive range of semiconductor technologies, including Si, SiC, and GaN in both e-mode and d-mode. This means, we offer our customers a one-stop shop for all their semiconductor needs”, explains Stefan Tilger, CFO and managing director at Nexperia Germany.
The investment is yet another milestone in the 100-year history of Nexperia’s production site in Hamburg-Lokstedt. Since the foundation of Valvo Radioröhrenfabrik in 1924, the site has continuously developed and today supplies around a quarter of the global demand for small signal diodes and transistors. Since its spin-off from NXP in 2017, Nexperia has invested substantial sums in the Hamburg site, increased the workforce from 950 to around 1,600 and brought the technological infrastructure up to the state-of-the-art. This continued expenditure underlines the company’s commitment to remaining at the forefront of the industry and providing innovative solutions to its customers worldwide.
Original – Nexperia
-
GaN / LATEST NEWS / PRODUCT & TECHNOLOGY / TOP STORIES / WBG2 Min Read
Infineon Technologies AG introduced the new CoolGaN™ Transistor 700 V G4 product family. The devices are highly efficient for power conversion in the voltage range up to 700 V. In contrast to other GaN products on the market, the input and output figures-of-merit of these transistors provide a 20 percent better performance, resulting in increased efficiency, reduced power losses, and more cost-effective solutions. The combination of electrical characteristics and packaging ensures maximum performance in many applications such as consumer chargers and notebook adapters, data center power supplies, renewable energy inverters, and battery storage.
The product series comprises 13 devices with a voltage rating of 700 V and on-resistance range from 20 mΩ to 315 mΩ. The increased granularity in device specification, combined with a wide range of industry standard package options including PDFN, TOLL and TOLT allow R DS resistance and packages to be selected according to application requirements. As a result, both electrical and thermal system performance can be optimized and implemented in the most cost-effective solution.
The devices are characterized by a fast turn-on and turn-off speed and minimal switching losses. The on-resistance range enables power systems from 20 W to 25,000 W. In addition, the 700 V E-mode with the industry’s highest transient voltage of 850 V increases the reliability of the overall system as it offers greater robustness against anomalies in the user environment such as voltage peaks.
The CoolGaN Transistor 700 V G4 products in TOLL, PDFN 5×6 and 8×8 packages are available now, more variety in R DS(on) as well as the TOLT package will follow later this year.
Original – Infineon Technologies
-
LATEST NEWS / TOP STORIES3 Min Read
Renesas Electronics Corporation announced that it has completed the acquisition of Transphorm, Inc. as of June 20, 2024. With the closing of the acquisition now completed, Renesas will immediately start offering GaN-based power products and related reference designs to meet the rising demand for wide bandgap (WBG) semiconductor products.
WBG materials such as GaN and silicon carbide (SiC) are considered key technologies for next-generation power semiconductors due to their superior power efficiency, higher switching frequencies and small footprints compared to conventional silicon-based devices. Both GaN and SiC-based products are expected to grow rapidly over the next decade, driven by demand from electric vehicles (EVs), inverters, data center servers, artificial intelligence (AI), renewable energy, industrial power conversion, consumer applications and others.
“Customers instantly benefit from the new GaN products through turnkey reference designs, which integrate technologies from both companies,” said Chris Allexandre, Senior Vice President and General Manager of Power at Renesas. “Adding GaN into our portfolio also reinforces our commitment to develop products and technology that make people’s lives easier. Providing robust and sustainable power solutions that save energy, reduce cost and minimize environmental impacts does just that.”
Investing in the power business is an important part of Renesas’ strategy for achieving sustainable, long-term growth. Other recent moves that Renesas has made to bolster this market segment include: the opening of the Kofu Factory, a dedicated 300-mm wafer fab for power products; ramping up a new SiC production line at the Takasaki Factory; and forging an agreement with Wolfspeed to secure a steady supply of SiC wafers over the next 10 years. With GaN technology now part of Renesas’ portfolio, Renesas is poised to offer more comprehensive power solutions to support the evolving needs of customers across a broad range of applications.
On the same day that it completed the acquisition of Transphorm, Renesas rolled out 15 new Winning Combinations, market-ready reference designs that combine the new GaN products with Renesas’ embedded processing, power, connectivity and analog portfolios. These include the designs of Transphorm’s automotive-grade GaN technology integrated for on-board battery chargers as well as 3-in-1 powertrain solutions for EVs.
Some examples are:
- 500W Onboard Battery Charger for 2-Wheeler EV
- 3-in-1 EV Unit: Inverter, Onboard Charger, DC/DC Converter
- 240W 48V Extended Power Range AC/DC Adapter
- 3.6KW Bi-directional Digital Power DAB System
Founded in 2007 in Goleta, California, Transphorm, with roots from the University of California at Santa Barbara and the Wide Bandgap industry, is built on a foundation of unique technology entrepreneurship. Transphorm, a leading innovator in GaN semiconductors designs, manufactures and sells high-performance and high-reliability GaN power products for a broad spectrum of high-voltage power conversion applications.
Original – Renesas Electronics
-
LATEST NEWS / PROJECTS / SiC / TOP STORIES / WBG3 Min Read
Electrification, renewables and artificial intelligence are global megatrends converging and driving unprecedented demands for advanced power semiconductors capable of optimizing energy conversion and management. In a strategic move toward addressing these demands, onsemi announced plans to establish a state-of-the-art, vertically integrated silicon carbide (SiC) manufacturing facility in the Czech Republic. The site would produce the company’s intelligent power semiconductors that are essential for improving the energy efficiency of applications in electric vehicles, renewable energy and AI data centers.
“Our brownfield investment would establish a Central European supply chain to better service our customers’ rapidly increasing demand for innovative technologies that improve the energy efficiency in their applications,” said Hassane El-Khoury, president and CEO, onsemi. “Through a close collaboration with the Czech government, the expansion would also enhance our production of intelligent power semiconductors that are essential to helping ensure the European Union is able to achieve its ambitions to significantly reduce carbon emissions and environmental impact.”
“onsemi’s decision to expand in Czechia is a clear confirmation of our country’s attractiveness for foreign investment and will bring significant momentum for the development of our economy,” said Mr. Jozef Síkela, Minister of Industry and Trade of the Czech Republic. “This investment not only strengthens our position in the semiconductor field but can also contribute to the development of the automotive industry and help us with its adaptation to the rise of electromobility.”
onsemi’s plan to expand SiC manufacturing with a multi-year brownfield investment of up to $2 billion (44 billion CZK) is part of the company’s previously disclosed long-term capital expenditure target. This investment would build on the company’s current operations in the Czech Republic, which include silicon crystal growth, silicon and silicon carbide wafer manufacturing (polished and EPI) and a silicon wafer fab. Today, the site can produce more than three million wafers annually, including more than one billion power devices. Upon completion, the operation would contribute annually more than $270 million USD (6 billion CZK) to the country’s GDP.
Pending all final regulatory and incentive approvals, including the investment incentive approval by the government of the Czech Republic and its notification to the European Commission, this would be one of the largest private sector investments in the Czech Republic’s history and would further contribute to the prosperity and economic dynamism of the Zlín region. onsemi is one of the first companies to invest in advanced semiconductor manufacturing in the Central European region.
With this investment, the company would contribute to the strategic positioning of the region within the EU’s semiconductor value chain and demonstrate that all EU countries can benefit from the European Chips Act. The announcement also reflects onsemi’s strategic alignment with the overarching goals of the European Chips Act of increasing market share and technological advancement to strengthen the resilience of the EU’s semiconductor supply chains in times of ever-growing demand.
Silicon carbide is a critical material for high-power, high-temperature applications, and is extremely difficult to produce. onsemi is one of the only companies in the world with the ability to manufacture SiC-based semiconductors from crystal growth to advanced packaging solutions. By expanding its production facilities in the Czech Republic, onsemi would be faster to provide supply assurance for customers, strengthening its leadership in intelligent power solutions. This integration would also enable onsemi to leverage its latest advancements in research and development (R&D) to maximize manufacturing and production efficiency.
Original – onsemi
-
LATEST NEWS / PRODUCT & TECHNOLOGY / SiC / TOP STORIES / WBG2 Min Read
At PCIM Europe 2024 Leapers Semiconductor unveiled the next-generation molded half-bridge SiC modules for main drive applications (LPS-Pack series). This new series was specifically developed to meet the unique requirements of a renowned international automotive manufacturer.
Key Advantages of the New Module:
- Innovative Design Concept: Utilizing Pressfit Pin technology for signal and current transmission, the design achieves SiC on PCB, allowing current to pass directly through the PCB. This significantly reduces the parasitic inductance of the module and system, minimizes the controller’s size, and lowers the cost of the controller’s busbar and capacitors.
- Advanced Molding Process: The new molding process allows the module’s Tjmax to reach 200℃.
- Unique Module Design: Ensures substrate flatness, facilitating large-area sintering between the module and the heatsink. This reduces the system’s thermal resistance and enhances yield control processes.
- High Power Density: A single module (area < 26cm²) achieves a maximum current output of over 300 Arms. The system design is extremely compact and cost-effective.
- Versatile Application: Suitable for platform-based and modular development applications. The series currently covers 300-600 Arms, addressing various power requirements for different customer applications.
- Mass Production Ready: Offers superior product consistency and yield, making it more competitive than similar half-bridge modules.
The LPS-Pack series’ distinctive design and unique advantages set it apart from other molded solutions.
Original – Leapers Semiconductor
-
LATEST NEWS / PRODUCT & TECHNOLOGY / SiC / TOP STORIES / WBG2 Min Read
ROHM has developed four models as part of the TRCDRIVE pack™ series with 2-in-1 SiC molded modules (two of 750V-rated: BSTxxxD08P4A1x4, two of 1,200V-rated: BSTxxxD12P4A1x1) optimized for xEV (electric vehicles) traction inverters. TRCDRIVE pack™ supports up to 300kW and features high power density and a unique terminal configuration – help solving the key challenges of traction inverters in terms of miniaturization, higher efficiency, and fewer person-hours.
As the electrification of cars rapidly advances towards achieving a decarbonized society, the development of electric powertrain systems that are more efficient, compact, and lightweight is currently progressing. However, for SiC power devices that are attracting attention as key components, achieving low loss in a small size has been a difficult challenge. ROHM solves these issues inside powertrains with its TRCDRIVE pack™.
A trademark brand for ROHM SiC molded type modules developed specifically for traction inverter drive applications, TRCDRIVE pack™ reduces size by utilizing a unique structure that maximizes heat dissipation area. On top, ROHM’s 4th Generation SiC MOSFETs with low ON resistance are built in – resulting in an industry-leading power density 1.5 times higher than that of general SiC molded modules while greatly contributing to the miniaturization of inverters for xEVs.
The modules are also equipped with control signal terminals using press fit pins enabling easy connection by simply pushing the gate driver board from the top, reducing installation time considerably. In addition, low inductance (5.7nH) is achieved by maximizing the current path and utilizing a two-layer bus-bar structure for the main wiring, contributing to lower losses during switching.
TRCDRIVE pack™ is scheduled to be launched by March 2025 with a lineup of 12 models in different package sizes (Small / Large) and mounting patterns (TIM: heat dissipation sheet / Ag sinter). In addition, ROHM is developing a 6-in-1 product with built-in heat sink that is expected to facilitate rapid traction inverter design and model rollout tailored to a variety of design specifications.
Original – ROHM
-
LATEST NEWS / PRODUCT & TECHNOLOGY / TOP STORIES2 Min Read
Crystal IS, an Asahi Kasei company, announced production of 100 mm diameter single-crystal aluminum nitride (AlN) substrates with 99% usable area, based on current requirements for UVC LEDs. This improved quality is steadily approaching that of Crystal IS’ existing 2-inch substrates used in the production of its UVC LEDs. The ultra-wide bandgap and high thermal conductivity of AlN helps improve device reliability and performance in both UVC LEDs and other next generation RF and power devices.
“The improvement of our large diameter substrate quality over the last nine months showcases the expertise of our team in aluminum nitride innovation,” said Eoin Connolly, President and CEO of Crystal IS. “The inherent benefits of aluminum nitride are unlocking new applications in RF and power devices—we are excited to work with our partners to further develop this material to meet their needs.”
This achievement follows the company’s announcement of the first ever recorded 100 mm diameter in August 2023, which won an excellence award at Semiconductor of the Year in electronic materials for the Semiconductors Category. The Semiconductor of the Year Awards are organized by Electronic Device Industry News, an industry journal published in Tokyo by SangyoTimes Inc.
Crystal IS manufactures bulk aluminum nitride substrates at its headquarters in Green Island, New York and began selling 2-inch diameter substrates for research and development in RF and power devices in late 2023. This 100 mm diameter milestone accelerates the development of new applications on aluminum nitride substrates as it integrates into existing fabrication lines for power and RF devices using alternative materials. The company plans to offer 100 mm diameter substrates manufactured in its US facility to key partners this year as they expand their focus beyond UVC LEDs.
Original – Crystal IS