• Power Integrations Announced Availability of SCALE-iFlex™ XLT Family of Dual-Channel Plug-and-Play Gate Drivers

    Power Integrations Announced Availability of SCALE-iFlex™ XLT Family of Dual-Channel Plug-and-Play Gate Drivers

    2 Min Read

    Power Integrations announced the launch of the SCALE-iFlex™ XLT family of dual-channel plug-and-play gate drivers for operation of single LV100 (Mitsubishi), XHP™ 2 (Infineon), HPnC (Fuji Electric) and equivalent semiconductor modules up to 2300 V blocking voltage for wind, energy storage and solar renewable energy installations.

    This single-board driver enables active thermal management of inverter modules for improved system utilization and reduces the bill-of-material count for increased reliability.

    Thorsten Schmidt, product marketing manager at Power Integrations commented: “It’s a real challenge to build a single-board gate driver for these ‘new dual’ style IGBT modules. Our compact new SCALE-iFlex XLT gate drivers fit inside the outline of the module, allowing the drivers to be mounted on the module, which gives converter system designers a high degree of mechanical design freedom.”

    SCALE-iFlex XLT dual-channel gate drivers feature Negative Temperature Coefficient (NTC) data reporting – an isolated temperature measurement of the power module – which allows accurate thermal management of converter systems. This enables system designers to optimize thermal design and obtain a 25 to 30 percent converter power increase from the same hardware.

    The isolated NTC readout also reduces hardware complexity, eliminating multiple cables, connectors and additional isolation barrier crossing circuits. The new gate drivers employ Power Integrations’ SCALE-2 chip set which minimizes component count, enhancing reliability. The gate driver board also protects the power switches in the event of a short-circuit.

    Original – Power Integrations

    Comments Off on Power Integrations Announced Availability of SCALE-iFlex™ XLT Family of Dual-Channel Plug-and-Play Gate Drivers
  • Nexperia Announced Availability of 1200 V SiC MOSFETs in D2PAK-7 SMD Package

    Nexperia Announced Availability of 1200 V SiC MOSFETs in D2PAK-7 SMD Package

    2 Min Read

    Nexperia announced that it is now offering its industry leading 1200 V silicon carbide (SiC) MOSFETs in D2PAK-7 surface mount device (SMD) packaging, with a choice of 30, 40, 60, and 80 mΩ RDSon values. This announcement follows on from Nexperia’s late-2023 release of two discrete SiC MOSFETs in 3 and 4-pin TO-247 packaging and is the latest offering in a series which will see its SiC MOSFET portfolio swiftly expand to include devices with RDSon values of 17, 30, 40, 60 and 80 mΩ in flexible package options. 

    With the release of the NSF0xx120D7A0, Nexperia is addressing the growing market demand for high performance SiC switches in SMD packages like D2PAK-7, which is becoming increasingly popular in various industrial applications including electric vehicle (EV) charging (charge pile, offboard charging), uninterruptible power supplies (UPS) and inverters for solar and energy storage systems (ESS).

    It is also further testimony to Nexperia’s successful strategic partnership with Mitsubishi Electric Corporation (MELCO), which has seen the two companies join forces to push the energy efficiency and electrical performance of SiC wide bandgap semiconductors to the next level, while additionally future-proofing production capacity for this technology in response to ever growing market demand.

    RDSon is a critical performance parameter for SiC MOSFETs because it impacts conduction power losses. However, many manufacturers concentrate on the nominal value, neglecting the fact that it can increase by more than 100% as device operating temperatures rise, resulting in considerable conduction losses.

    Nexperia identified this as a limiting factor in the performance of many currently available SiC devices and leveraged the features of its innovative process technology to ensure that its new SiC MOSFETs offer industry-leading temperature stability, with the nominal value of RDSon increasing by only 38% over an operating temperature range from 25 °C to 175 °C.

    Tightest threshold voltage, VGS(th) specification, allows these discrete MOSFETs to offer balanced current-carrying performance when connected in parallel. Furthermore, low body diode forward voltage (VSD) is a parameter which increases device robustness and efficiency, while also relaxing the dead-time requirement during freewheeling operation.

    Original – Nexperia

    Comments Off on Nexperia Announced Availability of 1200 V SiC MOSFETs in D2PAK-7 SMD Package
  • Qromis Brings a Revolutionary Substrate Solution for Large-Diameter GaN Epi and Device Wafers

    Qromis Brings a Revolutionary Substrate Solution for Large-Diameter GaN Epi and Device Wafers

    3 Min Read

    Qromis, Inc. brings a revolutionary, high performance substrate solution for large-diameter GaN epi and device wafers. Rather than solving incremental scale and performance challenges of conventional substrates for WBG semiconductors, QST™ (Qromis Substrate Technology) has been developed and validated as a disruptive solution, with cross-functional optimization.

    In this approach, the key properties of substrate material such as stress, lattice mismatch, thermal stability and shape control are engineered independently for the best fit with GaN epitaxial and device layers, as well as with different device architectures and performance targets. QST™ materials layers are integrated together in the conventional semiconductor fab with a simple manufacturing flow.

    The resulting large diameter substrates (6-inch, 8-inch, 12-inch or beyond) are capable of supporting from a few to tens of microns of high-quality GaN epitaxy, from which unique, high performance and low cost GaN device structures are fabricated.

    Qromis is designing reference devices for device manufacturers to demonstrate the benefits of the groundbreaking QST™ technology. These devices exploit key advantages of QST™ over other substrate solutions:

    – High quality and stress-free GaN,
    – Ability to deposit thick, bulk-like GaN epi layers on large diameter substrates,
    – Low defectivity, eliminating a major limitation to performance and scalability.

    With these distinct features, designers can now break free from the current technological limitations of GaN process technologies and develop advanced device architectures for lateral and vertical device designs of light emitters, switches, rectifiers, as well as monolithic and integrated circuits.

    Qromis, Inc., established in March 2015 and located in Silicon Valley, California, is a privately held fabless technology innovator focusing on energy efficient and high performance wide bandgap (WBG) semiconductor materials and device solutions which dramatically reduce global energy use and consumption. The Company is poised to become one of the premier players in the rapidly growing, multi-billion dollar WBG industry with its disruptive and validated solutions in substrate and device technologies, which enable an unmatched cost, performance, and application scale. Markets served include power electronics, light emitting diodes (LEDs), advanced displays, and RF electronics, and other emerging high performance and energy efficient applications.

    As a fabless company, Qromis is driving the commercialization of its unique solutions in conjunction with its foundry network. The Company and its foundry partner offer WBG device foundry services, as well as access to advanced and novel process technology platforms, for its customers and partners.

    To learn more about Qromis and its substrate technology, join the International Conference on Compound Semiconductor Manufacturing Technology which takes place May 20-23, 2024 in Tucson, Arizona.

    Original – Qromis

    Comments Off on Qromis Brings a Revolutionary Substrate Solution for Large-Diameter GaN Epi and Device Wafers
  • Polar Semiconductor to Expand Bloomington Manufacturing Facility

    Polar Semiconductor to Expand Bloomington Manufacturing Facility

    8 Min Read

    Polar Semiconductor, the only U.S.-based manufacturer specializing in sensor, power, and high-voltage semiconductors, announced plans to expand its Bloomington, Minnesota manufacturing facility and branch into innovative technologies to serve new customers and markets. Polar expects to invest approximately $525 million in the expansion of the facility over the next two years, subject to receipt of appropriate approvals and federal, state, and local incentives.

    Polar has signed a non-binding preliminary memorandum of terms with the Department of Commerce, under which it would receive $120 million in proposed direct funding as part of the U.S. CHIPS and Science Act, and a $75 million investment from the State of Minnesota. In addition, Polar has entered into a definitive agreement pursuant to which Niobrara Capital and Prysm Capital are leading an equity investment of $175 million, enabling Polar to transition to a U.S.-owned merchant foundry. Polar plans to claim the Department of the Treasury’s Investment Tax Credit, which is expected to be up to 25% of qualified capital expenditures.

    Through these investments, Polar expects to:

    • Double its current U.S. production capacity of 200mm semiconductor wafers, increasing production from approximately 20,000 wafers per month to nearly 40,000 wafers per month;
    • Expand and modernize its facility with new automation and AI capabilities to become globally competitive through economies of scale;
    • Better serve customers in automotive, aerospace and defense, optoelectronics, MEMS, and medical devices in the U.S. with cutting-edge semiconductor products; and
    • Create over 160 new jobs to further strengthen Polar’s support of its community.

    Surya Iyer, President and COO of Polar Semiconductor, said, “We are very pleased to announce this historic investment in Minnesota semiconductor manufacturingOur expanded manufacturing facility will allow us to increase capacity and branch into innovative technologies to serve new customers and markets. Polar and its employees are grateful to the U.S. Department of Commerce and the State of Minnesota for their commitment to the future of American semiconductor manufacturing and appreciate the strong collaboration with the CHIPS Program Office, Minnesota Department of Employment and Economic Development (“DEED”), and the City of Bloomington, Minnesota, throughout this process. Polar is also pleased to welcome a significant equity investment from Niobrara Capital and Prysm Capital, which will allow the Company to become U.S.-owned, and for the continued support of our long-term partners, Sanken Electric and Allegro MicroSystems.”

    Chip Schorr, Founder and Managing Partner of Niobrara Capital, said, “Polar is positioned to enable many of America’s most critical industries, such as aerospace and defense, automotive and medical, to have a dedicated, high performance, low cost, onshore source of power semiconductors and sensors. We are pleased to be partnering with the company to support its growth and the growth of U.S. technology manufacturing leadership.”

    Jay Park, Co-Founder and Managing Partner of Prysm Capital, said “The public and private investment in Polar is a testament to the strength of Polar’s offering and team and a significant event for onshore technology investment in America. We are already seeing robust demand for Polar’s planned capacity that exceeds our expectations and reinforces our confidence in Polar.”

    “Thanks to President Biden’s leadership, with this announcement we are making taxpayer dollars go as far as possible to create jobs, secure our supply chains, and bolster manufacturing in Minnesota,” said U.S. Secretary of Commerce Gina Raimondo. “This proposed investment in Polar will crowd in private capital, which will help make Polar a U.S.-based, independent foundry. They will be able to expand their customer base and create a stable domestic supply of critical chips, made in America’s heartland.”

    “When President Biden signed the CHIPS and Science Act, he put a stake in the ground about the importance of semiconductor manufacturing in the United States,” said Assistant to the President for Science and Technology and Director of the White House Office of Science and Technology Policy Arati Prabhakar. “This is where the President’s leadership changes communities and changes lives. This proposed federal investment will catalyze $525 million from private companies and the state of Minnesota to create a healthy supply of made-in-Minnesota semiconductors that are essential to producing cars, electrical grids, defense systems, and more.”

    “The future of the semiconductor industry is being built right here in the United States, and Polar will be part of that innovation boom. Their high-voltage technology has critical customer end uses across the aerospace, automotive, and defense sectors, and this proposed investment would help them introduce new capabilities to manufacture the next generation of semiconductors,” said Under Secretary of Commerce for Standards and Technology and National Institute of Standards and Technology Director Laurie E. Locascio.

    “If we want our country to continue leading the global economy, we must stay on the cutting edge of manufacturing. This landmark investment in Polar Semiconductor’s Bloomington facility will be a game changer for domestic semiconductor manufacturing,” said Senator Amy Klobuchar. “I’m proud to have worked with Polar Semiconductor to secure the resources needed to ensure Minnesota continues to be a leader in advanced manufacturing for decades to come.”

    Governor Tim Walz said, “As a top state for innovation, education, and workforce training, Minnesota has an established reputation as a leader in the growing high-tech economy. We have been consistent and creative in our support for companies like Polar that want to establish and grow their businesses here in Minnesota. We’re grateful to the Commerce Department for its commitment to Minnesota’s future and its partnership with our state.”

    The $75 million state award is through the Minnesota Forward Fund, a new DEED program Gov. Walz signed into law last year to invest $400 million in business growth and attract new companies to Minnesota. It also provides matching funds for companies seeking federal resources like CHIPS Act funding. This is the Minnesota Forward Fund’s first award.

    “The Minnesota Forward Fund is one of the ways the Walz-Flanagan Administration is supporting innovative companies like Polar Semiconductor that are helping build Minnesota’s cutting-edge economy,” said DEED Commissioner Matt Varilek. “The number of semiconductor companies in Minnesota is growing, and they’re creating hundreds of new, high-paying jobs every year. I appreciate the Commerce Department’s support as we make this innovative industry even stronger.”

    Polar Semiconductor is a leader of the Minnesota CHIPS Coalition, formed by the GREATER Minneapolis–Saint Paul Partnership, the economic development partnership for the 15-county region, in late 2022 after the passage of the federal CHIPS and Science Act. Composed of more than 70 organizations, including manufacturers, supply-chain partners, education and training providers, labor organizations, and state and local governments, the coalition is determined to reinvigorate the region’s legacy in technology and establish the Midwest’s semiconductor industry as a national leader.

    “As a key leader in the Minnesota CHIPS Coalition, Polar Semiconductor is accelerating the growth of Minnesota’s existing semiconductor and microelectronics industry with their investment in Bloomington,” said Peter Frosch, President and CEO of the GREATER MSP Partnership. “Together with Polar and more than 70 organizations across industry, government, academia, and community, we have a shared ambition to double the size of the semiconductor and microelectronics industry in Minnesota by adding 10,000 more great jobs. The State of Minnesota’s $250 million match funds for CHIPS, along with federal grants, makes us ready to scale the industry here in Minnesota.”

    Polar is leading the Minnesota CHIPS Coalition Workforce Partnership, in collaboration with semiconductor ecosystem companies, educational institutions, employment and training organizations, the Governor’s Workforce Development Board (GWDB), and DEED to develop the high-tech manufacturing workforce of the next generation.

    Educational institution partners include the University of Minnesota, University of St. Thomas, Minnesota State College and University System, private technical colleges, and several high school systems in the state. The workforce partnership is already creating impact through training, upskilling, and apprenticeship programs, and will continue to build on its successful collaborative model, partially supported by investments from the State and CHIPS funding.

    $1.6 million of Polar’s CHIPS award will be allocated towards its workforce development efforts. Additionally, the workforce partnership expects to leverage preeminent nationwide programs, for example SCALE (Indiana-based DoD program), to boost and supplement local efforts.

    “Bloomington has always been a place where innovation thrives. Polar Semiconductor’s significant private investment in expanding its facilities, with potential direct funding from the CHIPS and Science Act and a substantial investment by the State of Minnesota, will boost our local economy and will contribute to the growth and vibrancy of semiconductor manufacturing in Bloomington,” said Bloomington Mayor Tim Busse. “We’re excited to see the tangible benefits of these investments right here in our city, bringing jobs and new opportunities for our workforce and community.”

    Original – Polar Semiconductor

    Comments Off on Polar Semiconductor to Expand Bloomington Manufacturing Facility
  • Power Integrations to Acquire Assets of Odyssey Semiconductor Technologies

    Power Integrations to Acquire Assets of Odyssey Semiconductor Technologies

    2 Min Read

    Power Integrations announced an agreement to acquire the assets of Odyssey Semiconductor Technologies, a developer of vertical gallium-nitride (GaN) transistor technology. The transaction is expected to close in July 2024, after which all key Odyssey employees are expected to join Power Integrations’ technology organization.

    The acquisition supports the company’s ongoing development roadmap for its proprietary PowiGaN™ technology, which is featured in many of the company’s product families including InnoSwitch™ ICs, HiperPFS™-5 power-factor-correction ICs and the recently launched InnoMux™-2 family of single-stage, multiple-output ICs. The company introduced 900- and 1250-volt versions of PowiGaN technology and products in 2023.

    Commented Dr. Radu Barsan, Power Integrations’ vice president of technology: “Power Integrations has been at the forefront of GaN development and commercialization since we began shipping products with PowiGaN technology in 2018. We are executing on an ambitious roadmap that includes driving toward cost parity with silicon MOSFETs and expanding the voltage and power capabilities of PowiGaN.

    Our goal is to commercialize a cost-effective high-current and high-voltage GaN technology to support higher-power applications currently served by silicon carbide (SiC), at a much lower cost and higher performance enabled by the fundamental material advantages of GaN over SiC. The experience of the Odyssey team in high-current vertical GaN will augment and accelerate these efforts, and we are delighted to add them to our team.”

    Added Dr. Richard Brown, Odyssey co-founder and CEO: “The Odyssey team and I are excited to join Power Integrations in accelerating their GaN technology roadmap. As the first company to commercialize high-voltage GaN, Power Integrations continues to lead the industry in driving the technology forward in terms of cost, voltage and current, as well as the design of system-level products that take full advantage of the capabilities of GaN.”

    Original – Power Integrations

    Comments Off on Power Integrations to Acquire Assets of Odyssey Semiconductor Technologies
  • Infineon Technologies to Deliver SiC Power Solutions for Xiaomi's Recently Announced SU7 EV

    Infineon Technologies to Deliver SiC Power Solutions for Xiaomi’s Recently Announced SU7 EV

    2 Min Read

    Infineon Technologies AG will provide silicon carbide (SiC) power modules HybridPACK™ Drive G2 CoolSiC™ and bare die products to Xiaomi EV for its recently announced SU7 until 2027. Infineon’s CoolSiC-based power modules allow for higher operating temperatures, resulting in best-in-class performance, driving dynamics and lifetime.

    Traction inverters based on the technology can, for example, further increase electric vehicle range. The HybridPACK Drive is Infineon’s market-leading power module family for electric vehicles, with almost 8.5 million units sold since 2017.

    Infineon provides two HybridPACK Drive G2 CoolSiC 1200 V modules for the Xiaomi SU7 Max. In addition, Infineon supplies Xiaomi EV with a broad range of products per car, including, for example, EiceDRIVER TM gate drivers and more than ten microcontrollers in various applications. The two companies also agreed to further cooperate on SiC automotive applications to fully utilize the benefits of Infineon’s SiC portfolio.

    Zhenyu Huang, Vice President of Xiaomi EV and General Manager of the Supply Chain Department, said: “Infineon is an important partner with leading technologies and resilient manufacturing capabilities in power semiconductors as well as a highly scalable microcontroller product portfolio. The cooperation between the two companies will not only help stabilize the supply of silicon carbide for Xiaomi EV, but also help us build a high-performance, safe and reliable luxury car with leading-edge features for our customers.”

    Peter Schiefer, President of Infineon’s Automotive division, said: “We are very pleased to work with dynamic players such as Xiaomi EV and provide them with silicon carbide products designed to enhance the performance of electric cars even further. As the leading partner to the automotive industry, we are well positioned with our broad product portfolio, system understanding and multi-site manufacturing base to shape the mobility of the future.”

    This collaboration contributes to Infineon’s position as the number one partner of the global automotive industry. According to the latest data from TechInsights, Infineon is the largest semiconductor supplier to the automotive industry. In addition to its number one position in automotive power semiconductors, Infineon also took the lead in the field of automotive microcontrollers last year.

    Original – Infineon Technologies

    Comments Off on Infineon Technologies to Deliver SiC Power Solutions for Xiaomi’s Recently Announced SU7 EV
  • SemiQ Launched a Known-Good-Die Screening Program

    SemiQ Launched a Known-Good-Die Screening Program

    2 Min Read

    SemiQ has begun a known-good-die (KGD) screening program that delivers high-quality, electrically sorted and optically inspected advanced SiC MOSFET technology ready for back-end processing and direct die attachment. 

    Known-good-die from SemiQ ensures consistent electrical parameters, enabling customers to rely on repeatable performance for high end-of-line yield when building equipment such as high-voltage supplies, traction inverters, and power conditioning systems. Uniform die parameters also simplify the connection of multiple devices in high-power modules. 

    “SiC is a powerful technology aiding the global drive for sustainability and our known-good-die SiC MOSFETs from SemiQ provide important performance advantages, such as near-constant junction capacitance, low insertion loss, and high isolation needed for high-frequency applications,” says Michael Tsang, VP, Product Engineering and Operations at SemiQ. “Thanks to this program, customers can receive quality-assured dies that will streamline and improve productivity and deliver predictable and repeatable performance in high-efficiency applications.”

    The KGD program is active now and applies to the complete portfolio of SemiQ’s QSiC™ 1200V SiC MOSFETs, ranging from 20mΩ to 80mΩ. This portfolio supports robust and efficient electrification across automotive, eMobility, renewable energy, industrial power, and other applications.

    KGD devices are supplied post-singulation on a choice of carrier media including blue tape, pre-cured UV tape, and tape and reel to ease integration with customers’ processes.  For more information, please visit SemiQ’s KGD page.

    Original – SemiQ

    Comments Off on SemiQ Launched a Known-Good-Die Screening Program
  • Toshiba Released a Newly Developed 4500V1000A IEGT

    Toshiba Released a Newly Developed 4500V/1000A IEGT

    2 Min Read

    Toshiba Electronic Devices & Storage Corporation has launched a newly developed press pack IEGT “ST1000GXH35” with ratings of 4500 V/1000 A for use in high-voltage converters such as DC power transmission systems and industrial motor controllers.

    The new product ST1000GXH35 employs trench-type IEGT chips and high-speed diode chips. The IEGT chips reduce collector-emitter saturation-voltage and improve shutdown tolerance, short-circuit tolerance, and high-temperature tolerance. Therefore, collector-emitter saturation-voltage (VCE(sat) ) has been reduced by approximately 28 % from 3.00 V to 2.15 V (typical) compared with the existing product ST750GXH24.

    The high-speed diode chips suppress voltage oscillation during reverse recovery and improve reverse recovery tolerance and high-temperature tolerance. The new product can be used at a higher turn-on speed than the existing product, therefore the turn-on switching loss (Eon) has been reduced by approximately 34 % from 4.15 J to 2.75 J (typical).

    Furthermore, the test voltage for shutdown tests and short-circuit tests has been enhanced to 3400 V in response to applications requiring high voltage. In addition, the junction temperature rating has been increased from 125 °C to 150 °C (maximum) by improving the high-temperature tolerance of the diode.

    ST1000GXH35 contributes to size reduction and high output for high-voltage converters such as DC power transmissions, static VAR compensators, and industrial motor controllers.

    Applications

    • DC power transmissions
    • Static VAR compensators
    • Industrial motor controllers

    Features

    • Low collector-emitter saturation voltage and low turn-on switching loss
    • Enhanced to test-voltage 3400 V for shutdown and short-circuit tests
    • Maximum junction temperature rating: Tj(max)=150 °C

    Original – Toshiba

    Comments Off on Toshiba Released a Newly Developed 4500V/1000A IEGT
  • SiCrystal, a ROHM Group Company, and STMicroelectronics Expand a Multi-Year SiC Wafers Supply Agreement

    SiCrystal, a ROHM Group Company, and STMicroelectronics Expand a Multi-Year SiC Wafers Supply Agreement

    2 Min Read

    ROHM and STMicroelectronics announced the expansion of the existing multi-year, long-term 150mm silicon carbide (SiC) substrate wafers supply agreement with SiCrystal, a ROHM group company. The new multi-year agreement governs the supply of larger volumes of SiC substrate wafers manufactured in Nuremberg, Germany, for a minimum expected value of $230 million.

    Geoff West, EVP and Chief Procurement Officer, STMicroelectronics, commented “This expanded agreement with SiCrystal will bring additional volumes of 150mm SiC substrate wafers to support our devices manufacturing capacity ramp-up for automotive and industrial customers worldwide. It helps strengthen our supply chain resilience for future growth, with a balanced mix of in-house and commercial supply across regions”.

    “SiCrystal is a group company of ROHM, a leading company of SiC, and has been manufacturing SiC substrate wafers for many years. We are very pleased to extend this supply agreement with our longstanding customer ST. We will continue to support our partner to expand SiC business by ramping up 150mm SiC substrate wafer quantities continuously and by always providing reliable quality”.said Dr. Robert Eckstein, President and CEO of SiCrystal, a ROHM group company.

    Energy-efficient SiC power semiconductors enable electrification in the automotive and industrial sectors in a more sustainable way. By facilitating more efficient energy generation, distribution and storage, SiC supports the transition to cleaner mobility solutions, lower emissions industrial processes and a greener energy future, as well as more reliable power supplies for resource-intensive infrastructure like data centers dedicated to AI applications.

    Original – STMicroelectronics

    Comments Off on SiCrystal, a ROHM Group Company, and STMicroelectronics Expand a Multi-Year SiC Wafers Supply Agreement
  • Semilab and Fraunhofer IISB Establish a Joint Lab for (U)WBG Metrology

    Semilab and Fraunhofer IISB Establish a Joint Lab for (U)WBG Metrology

    1 Min Read

    Semilab Zrt. and Fraunhofer IISB announced the official kick-off of their strategic partnership.

    Within their new joint lab, located at the IISB in Erlangen, the partners develop state-of-the-art metrology and inspection solutions for (ultra-) wide-bandgap semiconductor materials.

    The goal is to take semiconductor metrology to a next level along the value chain, from base material to die. By bringing new features and tools from lab to market, new standards for SiC, GaN and other (U)WBG semiconductors will be set.

    Original – Fraunhofer IISB

    Comments Off on Semilab and Fraunhofer IISB Establish a Joint Lab for (U)WBG Metrology