-
GaN / LATEST NEWS / PRODUCT & TECHNOLOGY / WBG1 Min Read
Toyoda Gosei’s technology to enhance GaN substrates has been verified to improve power device performance. An article confirming it was published in Physica Status Solidi (RRL) – Rapid Research Letters, an international scientific journal for solid state physics.
Better power devices are indispensable for CO2 reduction in society, as they regulate electric power everywhere. Switching material from silicon to gallium nitride enables 90% energy-saving, superior devices, for which mass production of larger quality GaN substrates is requisite.
The Japanese Ministry of the Environment is leading a project for broad application of GaN power devices, for which Toyoda Gosei is providing technology to obtain ideal GaN crystals. One outcome of the project is a demonstrable improvement in power device performance with a GaN substrate fabricated on a GaN seed crystal that Toyoda Gosei jointly developed with Osaka University. Compared to power devices made on commercially-available substrates, power devices using these GaN substrates show higher performance in both power regulation capacity and yield ratio.
Toyoda Gosei will continue collaborating with government, universities, and other corporations for earlier dissemination of large quality GaN substrates.
Original – Toyoda Gosei
-
GaN / LATEST NEWS / WBG4 Min Read
Aehr Test Systems has received an initial production order from a top tier automotive semiconductor supplier for a FOX-XP™ wafer level test and burn-in system with fully integrated FOX WaferPak™ Aligner for production test of their gallium nitride (GaN) power semiconductor devices. The FOX-XP system with integrated WaferPak Aligner is scheduled to ship immediately.
Gayn Erickson, President and CEO of Aehr Test Systems, commented, “We have been working closely with this customer for over a year to support their evaluation and qualification process for delivering GaN power semiconductor devices to their customers. We are thrilled to receive this initial production purchase order, signaling their commitment to move forward with volume production wafer level burn-in of their GaN devices on our FOX-XP platform.
“This customer has extensively utilized a FOX-NP system under an evaluation agreement for production qualification and reliability testing of their devices over the past year. As part of the evaluation, they purchased a significant number of our proprietary WaferPak full wafer Contactors to successfully qualify a wide range of GaN device types designed for multiple end use applications including industrial, solar, data center, and automotive markets.
“Our FOX-P platform allows customers using the FOX-NP for device qualification and reliability testing of power semiconductors like GaN and silicon carbide (SiC) to transition seamlessly to the FOX-XP multi-wafer fully automated system, which is capable of testing up to nine wafers in parallel and is specifically designed to handle high-voltage testing and high temperature Gate and Drain stress test requirements. By leveraging our FOX-XP system and our proprietary WaferPak full wafer Contactors, customers can easily test wafers of varying sizes from 6 to 12 inches by simply purchasing new WaferPaks, while utilizing the same FOX-XP system and FOX WaferPak Aligner.
“Like SiC, GaN semiconductor MOSFETs are wide bandgap devices that offer significantly higher power conversion efficiency than silicon. GaN is particularly well suited for lower power applications such as sub-1000-watt power converters (fast chargers) used in consumer electronics like cell phones, tablets, and laptops. Additionally, it is increasingly being adopted for automotive power converters, supporting electrical systems in both electric and traditional gasoline-powered cars, as well as being targeted at data center power applications where power efficiency and delivery are critical to support the massive amount of computing power and data storage being installed over the next decade. Along with the increased usage in automotive and data centers, many industry experts and analysts predict that GaN MOSFETs will eventually replace silicon as the preferred technology for power conversion in photovoltaic (solar panel) applications.
“We view GaN as a transformative and rapidly growing technology in the power semiconductor market. With an anticipated compound annual growth rate of more than 40%, the GaN market is projected to reach $2.5 billion in annual device sales by 2029 according to Yole Group’s Power SiC/GaN Compound Semiconductor Market Monitor. In addition, Frost & Sullivan estimates GaN semiconductors will account for over 10% of the worldwide power semiconductor industry by the year 2028. This represents a significant growth opportunity for Aehr’s wafer level test and burn-in solutions.”
The FOX-XP and FOX-NP systems, available with multiple WaferPak Contactors (full wafer test) or multiple DiePakTM Carriers (singulated die/module test) configurations, are capable of functional test and burn-in/cycling of devices such as silicon carbide and gallium nitride power semiconductors, artificial intelligence processors, silicon photonics as well as other optical devices, 2D and 3D sensors, flash memories, magnetic sensors, microcontrollers, and other leading-edge ICs in either wafer form factor, before they are assembled into single or multi-die stacked packages, or in singulated die or module form factor.
Original – Aehr Test Systems
-
LATEST NEWS / SiC / WBG3 Min Read
ROHM has announced the adoption of its EcoSiC™ products, including SiC MOSFETs and SiC Schottky barrier diodes (SBDs) in the HFA/HCA series of 3.5kW output AC-DC power supply units for 3-phase applications from COSEL, a leading power supply manufacturer in Japan. Incorporating ROHM SiC MOSFETs and SiC SBDs into the forced air-cooled HFA series and conduction-cooled HCA series achieves up to 94% efficiency. The HCA series has been mass produced since 2023, while the HFA series began mass production in 2024.
Many industrial applications that handle high power in the industrial sector, including MRI machines and CO2 lasers, require 3-phase power supplies that differ from the single-phase power supplies used in households. COSEL’s AC-DC power supply units – equipped with ROHM’s EcoSiC™ technology that excels in high-temperature, high-frequency, high-voltage environments – are compatible with 3-phase power supplies from 200VAC to 480VAC, contributing to improved power supply efficiency across a wide range of industrial equipment worldwide.
Jun Uchida, General Manager, New Product Development Dept. 2, COSEL Co., Ltd.
“The HFA/HCA series achieve high efficiency despite delivering a high-power output of 3.5kW by incorporating ROHM’s low-loss SiC power devices. Operating at high input voltages typically poses a challenge in reducing losses in high-voltage power devices, but using SiC power devices translates to significantly lower losses compared to conventional solutions, resulting in power supplies that maintains high efficiency and power density even under demanding high-power conditions.”
Akihiro Hikasa, Group General Manager, Power Devices Business Unit, SiC Business Section, ROHM Co., Ltd.
“We are delighted to support COSEL, an industry leader in power supply systems, by providing SiC power devices. A leading company in SiC power devices, ROHM also provides comprehensive power solutions that combine peripheral components. In addition, by addressing customer issues, we also improve device performance by incorporating the insights gained into our products. Going forward, we will continue to collaborate with COSEL to contribute to a sustainable society by enhancing the efficiency of industrial equipment that handle large amounts of power.”
The HFA/HCA series are 3.5kW power supplies featuring a wide input range (200VAC to 480VAC) that meets global power supply requirements. This allows them to be used anywhere in the world without the need to modify the power supply for each region, contributing to the standardization of application designs. Both forced air-cooled (HFA series) and conduction-cooled (HCA series) models – selectable based on operating environment – are available in 48V and 65V output voltage variants that can be used as power sources for a variety of high-power applications such as laser generation and MRI.
Original – ROHM