• Navitas Semiconductor Announced Plans to Introduce 8-10kW Power Platform to Support AI Power Requirements

    Navitas Semiconductor Announced Plans to Introduce 8-10kW Power Platform to Support AI Power Requirements

    2 Min Read

    Navitas Semiconductor announced their AI data center technology roadmap for up to 3x power increase to support similar exponential growth in AI power demands expected in just the next 12-18 months.

    Traditional CPUs require typically only 300W and the data center ac/dc power supplies would typically power the equivalent of 10 of these or 3,000W (3kW). High-performance AI processors like NVIDIA’s ‘Grace Hopper’ H100 are already demanding 700W each today, with next-gen ‘Blackwell’ B100 & B200 chips anticipated to increase to 1,000W or more by next year.

    To meet this exponential power increase, Navitas is developing server power platforms which rapidly increase from 3kW to up to 10kW. In August 2023, Navitas introduced a 3.2kW data center power platform utilizing latest GaN technology enabling over 100W/in3 and over 96.5% efficiency. Now, Navitas is releasing a 4.5kW platform enabled by a combination of GaN and SiC to push densities over 130W/in3 and efficiencies over 97%. These two platforms have already generated significant market interest with over 20 data center customer projects in development expected to drive millions in GaN or SiC revenues starting this year.

    Today, Navitas also announces its plans to introduce an 8-10kW power platform by the end of 2024 to support 2025 AI power requirements. The platform will utilize newer GaN and SiC technologies and further advances in architecture to set all-new industry standards in power density, efficiency and time-to-market. Navitas is already engaged with major data-center customers, with full platform launch anticipated in Q4 ’24, completing this 3x increase in power demands in only 12-18 months.

    Navitas’ unique data-center design center is creating these system designs to address the dramatic increases in AI data center power requirements, and assist customers to deploy platforms quickly and effectively to meet the accelerated time-to-market demands of rapid AI advances. System designs include complete design collateral with fully-tested hardware, schematics, bill-of-materials, layout, simulation and hardware test results to maximize first-time-right designs and fast revenue generation.

    “The rapid development and deployment of artificial intelligence (AI) into global data centers has created a dramatic and unexpected power challenge for our entire industry,” noted Gene Sheridan, Navitas’ CEO and Co-Founder. “Our investment in leading-edge GaN and SiC technologies, combined with our unique data-center design center capabilities, have positioned us well. Our team has really stepped up to the challenge, with a 3x power increase in less than 18 months.”

    Original – Navitas Semiconductor

    Comments Off on Navitas Semiconductor Announced Plans to Introduce 8-10kW Power Platform to Support AI Power Requirements
  • Tianjin Economic-Technological Development Area Inked Investment Agreement with Vitesco Technologies

    Tianjin Economic-Technological Development Area Inked Investment Agreement with Vitesco Technologies

    1 Min Read

    Tianjin Economic-Technological Development Area (TEDA) inked an investment agreement with Vitesco Technologies for a new project for NEV intelligent manufacturing and automotive electronic products. With the new project, Vitesco aims to strengthen its presence in TEDA by introducing new products such as silicon carbide power modules, 800V motor stators and rotors, EMR3 three-in-one axle drive systems, high-voltage inverters, battery control units, and gearbox controllers.

    Vitesco Technologies is a global leader in automotive technology development and manufacturing, dedicated to providing advanced driving technology for sustainable mobility. Vitesco Technologies has been cooperating with TEDA for many years.

    The establishment of its R&D center in TEDA in 2019 marks a major step forward in the NEV market, upgrading the Vitesco Tianjin Base into a super factory integrating R&D, testing, and production. Thomas Stierle, member of the Executive Board and head of Electrification Solutions Division of Vitesco Technologies, expressed confidence in China, Tianjin, and TBNA. He stated that Vitesco Technologies will continue to increase its investment in TBNA and deepen cooperation in manufacturing R&D and technological innovation.

    Original – Tianjin Economic-Technological Development Area

    Comments Off on Tianjin Economic-Technological Development Area Inked Investment Agreement with Vitesco Technologies
  • Toshiba Started Mass Production of the Third Generation 1700 V SiC MOSFET Module

    Toshiba Started Mass Production of the Third Generation 1700 V SiC MOSFET Module

    2 Min Read

    Toshiba Electronic Devices & Storage Corporation has started mass production of a 3rd generation silicon carbide (SiC) 1700 V and drain current (DC) rating 250 A of SiC MOSFET module “MG250V2YMS3” for industrial equipment and has expanded its lineup.

    The new product MG250V2YMS3 offers low conduction loss with low drain-source on-voltage (sense) of 0.8 V (typ.). It also offers low switching loss with low turn-on switching loss of 18 mJ (typ.) and low turn-off switching loss of 11 mJ (typ.). This helps to reduce power loss of equipment and the size of cooling device.

    MG250V2YMS3 has a low stray inductance of 12 nH (typ.) and is capable of high-speed switching. In addition, it suppresses surge voltage in switching operation. Thus, it is available for high frequency isolated DC-DC converter.

    Toshiba’s SiC MOSFET module of 2-153A1A package has a lineup of four existing products, MG250YD2YMS3 (2200 V / 250 A), MG400V2YMS3 (1700 V / 400 A), and MG600Q2YMS3 (1200 V / 600 A), including new products. This provides a wider range of product selection.

    Toshiba will continue to meet the needs for high efficiency and the downsizing of industrial equipment.

    Applications

    Industrial equipment

    • Inverters and converters for railway vehicles
    • Auxiliary power supply for railway vehicles
    • Renewable energy power generation systems
    • Motor control equipment for industrial equipment
    • High frequency DC-DC converters, etc.

    Features

    • Low drain-source on-voltage (sense):
      VDS(on)sense=0.8 V (typ.) (ID=250 A, VGS=+20 V, Tch=25 °C)
    • Low turn-on switching loss:
      Eon=18 mJ (typ.) (VDD=900 V, ID=250 A, Tch=150 °C)
    • Low turn-off switching loss:
      Eoff=11 mJ (typ.) (VDD=900 V, ID=250 A, Tch=150 °C)
    • Low stray inductance:
      LsPN=12 nH (typ.)

    Original – Toshiba

    Comments Off on Toshiba Started Mass Production of the Third Generation 1700 V SiC MOSFET Module
  • Infineon Technologies Introduced the Second Generation of SiC MOSFET Trench Technology

    Infineon Technologies Introduced the Second Generation of SiC MOSFET Trench Technology

    3 Min Read

    Infineon Technologies AG opens a new chapter in power systems and energy conversion and introduces the next generation of silicon carbide (SiC) MOSFET trench technology. The new Infineon CoolSiC™ MOSFET 650 V and 1200 V Generation 2 improve MOSFET key performance figures such as stored energies and charges by up to 20 percent compared to the previous generation without compromising quality and reliability levels leading to higher overall energy efficiency and further contributing to decarbonization.

    CoolSiC MOSFET Generation 2 (G2) technology continues to leverage performance capabilities of silicon carbide by enabling lower energy loss that turns into higher efficiency during power conversion. This provides strong benefits to customers for various power semiconductor applications such as photovoltaics, energy storage, DC EV charging, motor drives and industrial power supplies.

    A DC fast charging station for electric vehicles which is equipped with CoolSiC G2 allows for up to 10 percent less power loss compared to previous generations, while enabling higher charging capacity without compromising form factors. Traction inverters based on CoolSiC G2 devices can further increase electric vehicle ranges. In the area of renewable energies, solar inverters designed with CoolSiC G2 make smaller sizes possible while maintaining a high power output, resulting in a lower cost per watt.

    “Megatrends call for new and efficient ways to generate, transmit and consume energy. With the CoolSiC MOSFET G2, Infineon brings silicon carbide performance to a new level,” said Dr. Peter Wawer, Division President Green Industrial Power at Infineon.

    “This new generation of SiC technology enables the accelerated design of more cost-optimized, compact, reliable, and highly efficient systems harvesting energy-savings and reducing CO 2 for every watt installed in the field. It’s a great example of Infineon’s relentless spirit, constantly pushing for innovation to drive decarbonization and digitalization in the industrial, consumer and automotive sectors.”

    Contributing to high-performance CoolSiC G2 solutions, Infineon’s pioneer CoolSiC MOSFET trench technology provides an optimized design trade-off, allowing higher efficiency and reliability compared to SiC MOSFET technology available so far. Combined with the award-winning .XT packaging technology, Infineon is further increasing the potential of designs based on CoolSiC G2 with higher thermal conductivity, better assembly control and improved performance.

    Mastering all relevant power technologies in silicon, silicon carbide and gallium nitride (GaN), Infineon offers design flexibility and leading-edge application know-how that meet the expectations and demands of modern designers. Innovative semiconductors based on wide-bandgap (WBG) materials like SiC and GaN are the key to conscious and efficient use of energy in fostering decarbonization.

    Original – Infineon Technologies

    Comments Off on Infineon Technologies Introduced the Second Generation of SiC MOSFET Trench Technology
  • Wise-integration Raises €15 million in Series B Funding Round

    Wise-integration Raises €15 million in Series B Funding Round

    3 Min Read

    Wise-integration, a French pioneer in digital control of gallium nitride (GaN) and GaN ICs for power supplies, announced financing of €15 million. The Series B round wasled by imec.xpand, with participation from Supernova Invest, BNP Paribas Developpement, Région Sud Investissement (RSI), Creazur, CASRA Capital and Angels for Greentech.

    The round will fuel mass production and commercial deployment of the company’s flagship products, WiseGan® and WiseWare®, its disruptive digital-control technology, and its support for clients globally as they adopt these solutions. It included the five investors from the previous funding and three new investors.

    CEO Thierry Bouchet said, “The €15 million of new funding will accelerate the company’sinternational expansion, ongoing R&D programs and the introduction of new products and solutions. “This funding will enable Wise-integration to accelerate our commercial development and product development and the launch of a new generation of high-performance GaN technology, which is designed to seamlessly integrate with digital controls and boost the efficiency and performance of power systems across various sectors,” Bouchet continued. “A third roadmap focus will be to broaden our WiseWare® product development, targeting high-value markets, such as industrial, telecom and automotive sectors.”

    Since its launch in 2020, the fabless company has established itself as an award-winning innovator in the power electronics industry, building a portfolio of more than 10 patent families. WiseGan® encompasses GaN power integrated circuits designed to maximize the benefits of GaN technology, including higher power density, efficiency and reduced heat generation. WiseWare® is a 32-bit, MCUbased, AC-DC digital controller optimized for GaN-based power supply architectures, offering simplified system design, a lower bill of materials and improved power density and efficiency.

    The company’s target markets include consumer electronics, from laptops to e-bikes, scooters and motorcycles, to industrial applications like robotics, as well as data centers and electric vehicles. All its solutions address the increasing demands for miniaturization, electrification and efficient power management.

    Wise-integration has established a first-class semiconductor GaN supply chain to support its mass production and commercialization strategy, while ensuring the most competitive costs in the market.

    “Wise-integration’s GaN technology can play a significant role in the global shift to electrification by enhancing the efficiency and performance of power systems across various sectors,” said Cyril Vančura, imec.xpand partner. “In the four years since its founding, this start-up has demonstrated the vision, drive, execution and technological knowhow to deliver game-changing power-electronics solutions, and we look forward to witnessing the next phase of its growth journey.”

    “With this new funding, Supernova Invest reaffirms its support for Wise-integration, a CEA-Leti spinoff that we have trusted since its creation,” said Damien Bretegnier, investment director, Supernova Invest. “We strongly believe in the huge potential of its WiseWare® digital control technology and associated WiseGan® components, anticipating a profound revolution in the power conversion market that propels GaN technology to replace legacy solutions even more rapidly.”

    “Wise-integration is one of the finest up and-coming companies in the hardware sector, a key sector in our beautiful region,” said Pierre Joubert, general director of RSI. “A high-potential company with a top management team, it fits in perfectly with the investment thesis of our Transition fund and its 100 percent Paris Agreement strategy. It has all the assets to become one of the strong links in the regional economic development strategy.”

    Original – Wise-integration

    Comments Off on Wise-integration Raises €15 million in Series B Funding Round
  • Vitesco Technologies SiC-Based High Voltage Box Delivers Superb Efficiency

    Vitesco Technologies SiC-Based High Voltage Box Delivers Superb Efficiency

    4 Min Read

    Vitesco Technologies is preparing the series application of its High Voltage Box. The modular system makes charging, converting and distributing electricity in electric vehicles cheaper by integrating several functions in one unit, depending on the design.

    This includes the vehicle On-Board Charger for AC charging on the grid with up to 22 kW of charging power, a DC current converter providing the current for the 12 V vehicle net, and power electronics which distribute high voltage power in the vehicle and facilitate fast DC-charging with up to 800 V. 

    Owed to the high level of mechatronic integration, the High Voltage Box has smaller space requirements to the vehicle while increasing the total system reliability in comparison to individual devices. State-of-the art silicon carbide (SiC) semiconductors boost charging efficiency to over 95 percent which lowers the vehicle owner’s electricity bill. This efficiency level is particularly beneficial for car owners because electric vehicles are frequently charged on the grid.

    Due to the high AC charging rate of up to 22 kW the High Voltage Box charges the car with 200 km of range in under two hours. DC high-power charging with up to 800 V achieves the same range in 12 minutes. The sophisticated power electronics ensure that this system offers electrical safety as well as efficiency.

    On a day-to-day level, charging, energy conversion and power distribution are just as relevant for a driver’s satisfaction with a vehicle as driving itself is. With our High Voltage Box, we integrate these core tasks of energy management into one efficient and compact unit. This integration makes electrification on a large scale and at low cost easier.

    Thomas Stierle, Member of the Executive Board and head of the Electrification Solutions division of Vitesco Technologies

    Today, the so-called On-Board Charger (OBC) for charging with alternating current (AC) on the grid is a separate device in the vehicle. This OBC inverts grid power to direct current (DC) that can be fed to the high voltage battery. Another separate device is the DC/DC converter which provides direct current from the high voltage battery to the 12 V power net – or it boosts 12 V to high voltage DC. A power electronics unit distributes high voltage current within the vehicle (hence: Power Distribution Unit, PDU). In addition, these electronics can be designed to allow DC charging with up to 800 V at high power charging points. All those components need to be connected, they require a housing, installation space, and cooling.

    The modular and scalable High Voltage Box makes it easier to cover two or more of these functions with a single device. SiC technology is used to minimize the conversion losses of the unit:

    A high level of efficiency brings the car owner’s electricity bill down and contributes to sustainability.

    Christian Preis, Head of Base Development Energy Transformation at Vitesco Technologies

    Within the modular design Vitesco Technologies covers all relevant European and worldwide grid topologies. The High Voltage Box was developed to support modular vehicle adaptation for the global market. At the same time, Vitesco Technologies is driving new functions ahead. The High Voltage Box for one of the two series applications will already function bidirectionally so that it can supply alternating current with 230 V from the DC battery current when this is required.

    This puts vehicle owners in the comfortable position to make versatile use of their large battery. For instance, if they wish to use power tools far away from the grid, or if they want to feed electricity to the grid which they have charged earlier from their own photovoltaic system. “In the future, this option to stabilize the grid will continue to gain importance “, Preis adds. The company’s experts are advancing the necessary standard for this in key committees and are thus part of the decision-making process about development trends. 

    In the future the High Voltage Box with bidirectional function can also make it possible to power a whole house from the High Voltage Battery during a blackout. This is an option because batteries in vehicles have a much bigger capacity than most of the batteries typically installed in private homes.

    Original – Vitesco Technologies

    Comments Off on Vitesco Technologies SiC-Based High Voltage Box Delivers Superb Efficiency
  • Cambridge GaN Devices Introduces New Reference Designs

    Cambridge GaN Devices Introduces New Reference Designs

    2 Min Read

    Cambridge GaN Devices (CGD) is addressing higher power industrial applications with its ICeGaN™ technology which has already proved itself rugged, reliable and easy-to-use in high volume consumer devices. At the APEC 2024, IEEE Applied Power Electronics Conference and Exposition, the company is introducing new reference designs and showing demos which address the broad and diverse industrial market.

    Andrea Bricconi | Chief Commercial Officer, CGD

    “We are acutely aware of the increasing power requirements of industrial applications, and the need for high efficiency. For example, as the use of Artificial Intelligence (AI) proliferates, the power demanded by the exponential growth in power demanded by datacentres is growing almost exponentially. Other applications, such as solar inverters, amplifiers, transport and smart mobility, process control and manufacturing are also interested in GaN and the feedback we have received is that they love the simplicity of our ‘Drive it Like a MOSFET’ approach.”

    At APEC, visitors to the booth are able to see the progress that CGD is making to support both emerging and existing markets for GaN technology..

    With a high power density of 23 W/in3, GGD’s 350 W PFC/LLC reference design has an average efficiency of 93%, and a no-load power consumption of 150 mW. The CrM Totem Pole PFC + Half-Bridge LLC PSU has been realised using CGD’s 650 V, 55 mΩ, H2 series ICeGaN technology, and delivers 20 V / 17.5 A output.

    The result of a partnership deal struck last year with Neways Electronics, a 3 kW photo-voltaic inverter is used to boost the DC solar voltage to a stable DC link voltage. With a maximum efficiency of 99.22% due to zero-current switching, it is a perfect example of how CGD’s GaN HEMT structure is simple for engineers to use, since it employs a standard silicon controller from Analog Devices Inc.

    ICeGaN has been employed by AGD Productions in its compact AGD DUET amplifier which is rated at 300W 4Ω. This is the first time the company has used a 100% GaN power transistor design for both the power stage and the amplifier.

    Finally, the GaNext project, a consortium of 13 partners from three nations has delivered compact 1 kW intelligent power modules featuring integrated drive, voltage control and protection circuits using CGD’s ICeGaN.

    Original – Cambridge GaN Devices

    Comments Off on Cambridge GaN Devices Introduces New Reference Designs
  • Qorvo® Delivers Four 1200V SiC Modules

    Qorvo® Delivers Four 1200V SiC Modules

    2 Min Read

    Qorvo® announced four 1200V silicon carbide (SiC) modules – two half-bridge and two full-bridge – in a compact E1B package with RDS(on) starting at 9.4mΩ. These highly efficient SiC modules are excellent solutions for electric vehicle (EV) charging stations, energy storage, industrial power supplies and solar power applications.

    “The modules in this new family can replace as many as four discrete SiC FETs, thus simplifying thermomechanical design as well as assembly. Our cascode technology also allows higher switching frequency operation, further reducing solution size by using smaller external components,” said Ramanan Natarajan, director of product line marketing for Qorvo’s SiC Power Products business.

    “For our customers, the high efficiency of these modules streamlines the power supply design process, so they can focus on the design, layout, assembly, characterization and qualification of one module as opposed to numerous discrete components.”

    Led by the 9.4mΩ UHB100SC12E1BC3N, these four SiC modules leverage Qorvo’s unique cascode configuration, which minimizes RDS(on) and switching losses to maximize efficiency, especially in soft-switching applications. Silver-sinter die attach reduces thermal resistance to as low as 0.23 °C/W; when combined with the stacked die construction found in the “SC” part numbers, power cycling performance is improved by 2X over comparable SiC power modules on the market.

    Together, these characteristics contribute to superior thermal performance and reliability with the ease of use and power density of a highly integrated SiC power module.

    The table below provides a snapshot of Qorvo’s new 1200V SiC module family:

    Part #DescriptionRDS(on) @25C (mΩ)
    UFB15C12E1BC3N1200V, 15A SiC full-bridge module70
    UFB25SC12E1BC3N1200V, 25A SiC full-bridge module35
    UHB50SC12E1BC3N1200V, 50A SiC half-bridge module19
    UHB100SC12E1BC3N1200V, 100A SiC half-bridge module9.4

    Qorvo’s suite of powerful design tools like its FET-Jet Calculator and QSPICE™ software aid in product selection and performance simulation. For more information about Qorvo’s advanced SiC solutions for industrial applications, please visit www.qorvo.com/go/sic.

    Original – Qorvo

    Comments Off on Qorvo® Delivers Four 1200V SiC Modules
  • Power Integrations Introduced InnoMux™-2 Family of Power-Supply ICs

    Power Integrations Introduced InnoMux™-2 Family of Power-Supply ICs

    2 Min Read

    Power Integrations announced the InnoMux™-2 family of single-stage, independently regulated multi-output offline power-supply ICs. InnoMux-2 ICs consolidate AC-DC and downstream DC-DC conversion stages into a single chip, providing up to three independently regulated outputs for use in white goods, industrial systems, displays and other applications requiring multiple voltages.

    Elimination of separate DC-DC stages slashes component count, reduces PCB footprint and increases efficiency by as much as 10 percentage points compared to traditional two-stage architectures. Efficiency is aided by the ICs’ 750 V PowiGaN™ gallium-nitride transistors, zero-voltage switching (without an active clamp) and synchronous rectification.  

    Roland Saint-Pierre, vice president of product development at Power Integrations said: “Most modern electronic systems rely on multiple internal voltages to operate various functions such as computing, communication and actuation function – typically heat, light, sound or motion of some kind. But losses in each conversion stage are compounded, degrading system performance and generating heat.

    The InnoMux-2 IC overcomes this challenge by providing up to three independently regulated voltage outputs or two voltage output and a constant current output from a single stage, achieving a compact and efficient power sub-system with low component count.”

    InnoMux-2 ICs deliver up to 90 watts of output power with accurate regulation of better than ±3 percent across the full input line, load, temperature and differential current step conditions. Total power system efficiency (AC to regulated low-voltage DC segment) is above 90 percent; the advanced InnoMux-2 controller also manages light-load power delivery, avoiding the need for pre-load resistors and reducing no-load consumption to less than 30 mW. This conserves power for necessary functionality in applications subject to the 300 mW allowance for standby usage under the European energy-using product (EuP) regulations.

    InnoMux-2 devices leverage Power Integrations’ thermally efficient InSOP™24 and InSOP™28 packages with PCB cooling, so no heatsink is required. Device options include dual- and three-output constant voltage (CV); optionally, one output may be dedicated to constant current (CC) drive, suitable for powering LEDs in displays or for high-speed charging of an internal battery. Typical applications include TVs, monitors, appliances, networking, home and building automation, LED emergency lighting and industrial power supplies.

    Original – Power Integrations

    Comments Off on Power Integrations Introduced InnoMux™-2 Family of Power-Supply ICs
  • Infineon Technologies Adds 750V G1 Discrete MOSFET to CoolSiC™ Family

    Infineon Technologies Adds 750V G1 Discrete MOSFET to CoolSiC™ Family

    2 Min Read

    Infineon Technologies AG introduced the 750V G1 discrete CoolSiC™ MOSFET to meet the increasing demand for higher efficiency and power density in industrial and automotive power applications. The product family includes both industrial-graded and automotive-graded SiC MOSFETs that are optimized for totem-pole PFC, T-type, LLC/CLLC, dual active bridge (DAB), HERIC, buck/boost, and phase-shifted full bridge (PSFB) topologies.

    The MOSFETs are ideal for use in both typical industrial applications, such as electric vehicle charging, industrial drives, solar and energy storage systems, solid state circuit breaker, UPS systems, servers/ datacenters, telecom, and in the automotive sector, such as onboard chargers (OBC), DC-DC converters, and many more.

    The CoolSiC MOSFET 750 V G1 technology features excellent RDS (on) x Q fr and superior  RDS (on) x Q oss Figure-of-Merits (FOMs), resulting in ultra-high efficiency in hard-switching and soft-switching topologies respectively. Its unique combination of high threshold voltage (V GS(th), Typ. of 4.3 V) with low Q GD/Q GS ratio ensures high robustness against parasitic turn-on and enables unipolar gate driving, leading to increased power density and low cost of the systems.

    All devices use Infineon’s proprietary die-attach technology which delivers outstanding thermal impedance for equivalent die sizes. The highly reliable gate oxide design combined with Infineon’s qualification standards delivers robust and long-term performance.

    With a granular portfolio ranging from 8 to 140 mΩ RDS (on) at 25°C, this new CoolSiC MOSFET 750 V G1 product family meets a wide range of needs. Its design ensures lower conduction and switching losses, boosting overall system efficiency.

    Its innovative packages minimize thermal resistance, facilitate improved heat dissipation, and optimize in-circuit power loop inductance, thereby resulting in high power density and reduced system costs. It’s important to note that this product family features the cutting-edge QDPAK top-side cooled package.

    Original – Infineon Technologies

    Comments Off on Infineon Technologies Adds 750V G1 Discrete MOSFET to CoolSiC™ Family